Homogeneous Large-Area Quasi-Free-Standing Monolayer and Bilayer Graphene on SiC

被引:26
|
作者
Pakdehi, D. Momeni [1 ]
Pierz, K. [1 ]
Wundrack, S. [1 ]
Aprojanz, J. [2 ]
Nguyen, T. T. N. [3 ]
Dziomba, T. [1 ]
Hohls, F. [1 ]
Bakin, A. [4 ,5 ]
Stosch, R. [1 ]
Tegenkamp, C. [2 ,3 ]
Ahlers, F. J. [1 ]
Schumacher, H. W. [1 ]
机构
[1] Phys Tech Bundesanstalt, Bundesallee 100, D-38116 Braunschweig, Germany
[2] Leibniz Univ Hannover, Inst Festkorperphys, Appelstr 2, D-30167 Hannover, Germany
[3] Tech Univ Chemnitz, Inst Phys, Reichenhainer Str 70, D-09126 Chemnitz, Germany
[4] Tech Univ Carolo Wilhelmina Braunschweig, Inst Halbleitertech, Hans Sommer Str 66, D-38106 Braunschweig, Germany
[5] Tech Univ Carolo Wilhelmina Braunschweig, Lab Emerging Nanometrol LENA, Langer Kamp 6a, D-38106 Braunschweig, Germany
关键词
epitaxial graphene; argon gas flow; graphene buffer layer; large-scale graphene growth; resistance anisotropy; SiC terrace steps; monolayer graphene; freestanding monolayer graphene; freestanding bilayer graphene; polymer-assisted sublimation growth; EPITAXIAL GRAPHENE; GROWTH; DEFECTS;
D O I
10.1021/acsanm.8b02093
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this study, we first show that the argon flow during epitaxial graphene growth is an important parameter to control the quality of the buffer and the graphene layer. Atomic force microscopy (AFM) and low-energy electron diffraction (LEED) measurements reveal that the decomposition of the SiC substrate strongly depends on the Ar mass flow rate while pressure and temperature are kept constant. Our data are interpreted by a model based on the competition of the SiC decomposition rate, controlled by the Ar flow, with a uniform graphene buffer layer formation under the equilibrium process at the SiC surface. The proper choice of a set of growth parameters allows the growth of a defect-free, ultrasmooth, and coherent graphene-free buffer layer and bilayer-free monolayer graphene sheets which can be transformed into large-area high-quality quasi-free-standing monolayer and bilayer graphene by hydrogen intercalation. AFM, scanning tunneling microscopy, Raman spectroscopy, and electronic transport measurements underline the excellent homogeneity of the resulting quasi-free-standing layers. Electronic transport measurements in four-point probe configuration reveal a homogeneous low resistance anisotropy on both mu m and mm scales.
引用
收藏
页码:844 / 852
页数:17
相关论文
共 50 条
  • [1] Synthesis of quasi-free-standing bilayer graphene nanoribbons on SiC surfaces
    Oliveira, Myriano H., Jr.
    Lopes, Joao Marcelo J.
    Schumann, Timo
    Galves, Lauren A.
    Ramsteiner, Manfred
    Berlin, Katja
    Trampert, Achim
    Riechert, Henning
    NATURE COMMUNICATIONS, 2015, 6
  • [2] Synthesis of quasi-free-standing bilayer graphene nanoribbons on SiC surfaces
    Myriano H. Oliveira, Jr.
    Joao Marcelo J. Lopes
    Timo Schumann
    Lauren A. Galves
    Manfred Ramsteiner
    Katja Berlin
    Achim Trampert
    Henning Riechert
    Nature Communications, 6
  • [3] Pinning and Anharmonic Phonon Effect of Quasi-Free-Standing Bilayer Epitaxial Graphene on SiC
    Sun, Li
    Wang, Peng
    Xie, Xuejian
    Chen, Xiufang
    Yu, Fapeng
    Li, Yanlu
    Xu, Xiangang
    Zhao, Xian
    NANOMATERIALS, 2022, 12 (03)
  • [4] Quasi-free-standing monolayer and bilayer graphene growth on homoepitaxial on-axis 4H-SiC(0001) layers
    Hassan, J.
    Winters, M.
    Ivanov, I. G.
    Habibpour, O.
    Zirath, H.
    Rorsman, N.
    Janzen, E.
    CARBON, 2015, 82 : 12 - 23
  • [5] Magnetotransport Properties of Quasi-Free-Standing Epitaxial Graphene Bilayer on SiC: Evidence for Bernal Stacking
    Lee, Kayoung
    Kim, Seyoung
    Points, M. S.
    Beechem, T. E.
    Ohta, Taisuke
    Tutuc, E.
    NANO LETTERS, 2011, 11 (09) : 3624 - 3628
  • [6] Ambipolar charge transport in quasi-free-standing monolayer graphene on SiC obtained by gold intercalation
    Kim, Kyung Ho
    He, Hans
    Struzzi, Claudia
    Zakharov, Alexei
    Giusca, Cristina E.
    Tzalenchuk, Alexander
    Park, Yung Woo
    Yakimova, Rositsa
    Kubatkin, Sergey
    Lara-Avila, Samuel
    PHYSICAL REVIEW B, 2020, 102 (16)
  • [7] Induced growth of quasi-free-standing graphene on SiC substrates
    Liu, Zhenxing
    Su, Zhen
    Li, Qingbo
    Sun, Li
    Zhang, Xue
    Yang, Zhiyuan
    Liu, Xizheng
    Li, Yingxian
    Li, Yanlu
    Yu, Fapeng
    Zhao, Xian
    RSC ADVANCES, 2019, 9 (55) : 32226 - 32231
  • [8] Quasi-Free-Standing Bilayer Graphene Hall-Effect Sensor
    Kachniarz, Maciej
    Petruk, Oleg
    Strupinski, Wlodzimierz
    Ciuk, Tymoteusz
    Bienkowski, Adam
    Szewczyk, Roman
    Salach, Jacek
    IEEE TRANSACTIONS ON MAGNETICS, 2019, 55 (01)
  • [9] Quasi-free-standing bilayer graphene nanoribbons probed by electronic transport
    Miccoli, Ilio
    Aprojanz, Johannes
    Baringhaus, Jens
    Lichtenstein, Timo
    Galves, Lauren A.
    Lopes, Joao Marcelo J.
    Tegenkamp, Christoph
    APPLIED PHYSICS LETTERS, 2017, 110 (05)
  • [10] Large area quasi-free standing monolayer graphene on 3C-SiC(111)
    Starke, U.
    Coletti, C.
    Emtsev, K. V.
    Zakharov, A. A.
    Ouisse, T.
    Chaussende, D.
    SILICON CARBIDE AND RELATED MATERIALS 2011, PTS 1 AND 2, 2012, 717-720 : 617 - +