Homogeneous Large-Area Quasi-Free-Standing Monolayer and Bilayer Graphene on SiC

被引:26
|
作者
Pakdehi, D. Momeni [1 ]
Pierz, K. [1 ]
Wundrack, S. [1 ]
Aprojanz, J. [2 ]
Nguyen, T. T. N. [3 ]
Dziomba, T. [1 ]
Hohls, F. [1 ]
Bakin, A. [4 ,5 ]
Stosch, R. [1 ]
Tegenkamp, C. [2 ,3 ]
Ahlers, F. J. [1 ]
Schumacher, H. W. [1 ]
机构
[1] Phys Tech Bundesanstalt, Bundesallee 100, D-38116 Braunschweig, Germany
[2] Leibniz Univ Hannover, Inst Festkorperphys, Appelstr 2, D-30167 Hannover, Germany
[3] Tech Univ Chemnitz, Inst Phys, Reichenhainer Str 70, D-09126 Chemnitz, Germany
[4] Tech Univ Carolo Wilhelmina Braunschweig, Inst Halbleitertech, Hans Sommer Str 66, D-38106 Braunschweig, Germany
[5] Tech Univ Carolo Wilhelmina Braunschweig, Lab Emerging Nanometrol LENA, Langer Kamp 6a, D-38106 Braunschweig, Germany
关键词
epitaxial graphene; argon gas flow; graphene buffer layer; large-scale graphene growth; resistance anisotropy; SiC terrace steps; monolayer graphene; freestanding monolayer graphene; freestanding bilayer graphene; polymer-assisted sublimation growth; EPITAXIAL GRAPHENE; GROWTH; DEFECTS;
D O I
10.1021/acsanm.8b02093
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this study, we first show that the argon flow during epitaxial graphene growth is an important parameter to control the quality of the buffer and the graphene layer. Atomic force microscopy (AFM) and low-energy electron diffraction (LEED) measurements reveal that the decomposition of the SiC substrate strongly depends on the Ar mass flow rate while pressure and temperature are kept constant. Our data are interpreted by a model based on the competition of the SiC decomposition rate, controlled by the Ar flow, with a uniform graphene buffer layer formation under the equilibrium process at the SiC surface. The proper choice of a set of growth parameters allows the growth of a defect-free, ultrasmooth, and coherent graphene-free buffer layer and bilayer-free monolayer graphene sheets which can be transformed into large-area high-quality quasi-free-standing monolayer and bilayer graphene by hydrogen intercalation. AFM, scanning tunneling microscopy, Raman spectroscopy, and electronic transport measurements underline the excellent homogeneity of the resulting quasi-free-standing layers. Electronic transport measurements in four-point probe configuration reveal a homogeneous low resistance anisotropy on both mu m and mm scales.
引用
收藏
页码:844 / 852
页数:17
相关论文
共 50 条
  • [21] Formation of quasi-free-standing graphene on SiC(0001) through intercalation of erbium
    Bentley, P. D.
    Bird, T. W.
    Graham, A. P. J.
    Fossberg, O.
    Tear, S. P.
    Pratt, A.
    AIP ADVANCES, 2021, 11 (02)
  • [22] Comeback of epitaxial graphene for electronics: large-area growth of bilayer-free graphene on SiC
    Kruskopf, Mattias
    Pakdehi, Davood Momeni
    Pierz, Klaus
    Wundrack, Stefan
    Stosch, Rainer
    Dziomba, Thorsten
    Goetz, Martin
    Baringhaus, Jens
    Aprojanz, Johannes
    Tegenkamp, Christoph
    Lidzba, Jakob
    Seyller, Thomas
    Hohls, Frank
    Ahlers, Franz J.
    Schumacher, Hans W.
    2D MATERIALS, 2016, 3 (04):
  • [23] Step-edge-induced resistance anisotropy in quasi-free-standing bilayer chemical vapor deposition graphene on SiC
    Ciuk, Tymoteusz
    Cakmakyapan, Semih
    Ozbay, Ekmel
    Caban, Piotr
    Grodecki, Kacper
    Krajewska, Aleksandra
    Pasternak, Iwona
    Szmidt, Jan
    Strupinski, Wlodek
    JOURNAL OF APPLIED PHYSICS, 2014, 116 (12)
  • [24] Charge neutrality of quasi-free-standing monolayer graphene induced by the intercalated Sn layer
    Kim, Hidong
    Dugerjav, Otgonbayar
    Lkhagvasuren, Altaibaatar
    Seo, Jae M.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2016, 49 (13)
  • [25] Semiconductor-Metal Transition and Band-Gap Tuning in Quasi-Free-Standing Epitaxial Bilayer Graphene on SiC
    Sugawara, Katsuaki
    Sato, Takafumi
    Kanetani, Kohei
    Takahashi, Takashi
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2011, 80 (02)
  • [26] Large-area homogeneous quasifree standing epitaxial graphene on SiC(0001): Electronic and structural characterization
    Forti, S.
    Emtsev, K. V.
    Coletti, C.
    Zakharov, A. A.
    Riedl, C.
    Starke, U.
    PHYSICAL REVIEW B, 2011, 84 (12)
  • [27] Atomic and electronic structure of Si dangling bonds in quasi-free-standing monolayer graphene
    Murata, Yuya
    Cavallucci, Tommaso
    Tozzini, Valentina
    Pavlicek, Niko
    Gross, Leo
    Meyer, Gerhard
    Takamura, Makoto
    Hibino, Hiroki
    Beltram, Fabio
    Heun, Stefan
    NANO RESEARCH, 2018, 11 (02) : 864 - 873
  • [28] Atomic and electronic structure of Si dangling bonds in quasi-free-standing monolayer graphene
    Yuya Murata
    Tommaso Cavallucci
    Valentina Tozzini
    Niko Pavliček
    Leo Gross
    Gerhard Meyer
    Makoto Takamura
    Hiroki Hibino
    Fabio Beltram
    Stefan Heun
    Nano Research, 2018, 11 : 864 - 873
  • [29] Quasi-Free-Standing Graphene Monolayer on a Ni Crystal through Spontaneous Na Intercalation
    Park, Young S.
    Park, Jae H.
    Hwang, Han N.
    Laishram, Tomba Singh
    Kim, Kwang S.
    Kang, Myung H.
    Hwang, Chan C.
    PHYSICAL REVIEW X, 2014, 4 (03):
  • [30] Enhanced Performance of a Visible Light Detector Made with Quasi-Free-Standing Graphene on SiC
    Li, Xiaomeng
    Chen, Xiufang
    Xu, Xiangang
    Hu, Xiaobo
    Zuo, Zhiyuan
    MATERIALS, 2019, 12 (19) : 1 - 10