Homogeneous Large-Area Quasi-Free-Standing Monolayer and Bilayer Graphene on SiC

被引:26
|
作者
Pakdehi, D. Momeni [1 ]
Pierz, K. [1 ]
Wundrack, S. [1 ]
Aprojanz, J. [2 ]
Nguyen, T. T. N. [3 ]
Dziomba, T. [1 ]
Hohls, F. [1 ]
Bakin, A. [4 ,5 ]
Stosch, R. [1 ]
Tegenkamp, C. [2 ,3 ]
Ahlers, F. J. [1 ]
Schumacher, H. W. [1 ]
机构
[1] Phys Tech Bundesanstalt, Bundesallee 100, D-38116 Braunschweig, Germany
[2] Leibniz Univ Hannover, Inst Festkorperphys, Appelstr 2, D-30167 Hannover, Germany
[3] Tech Univ Chemnitz, Inst Phys, Reichenhainer Str 70, D-09126 Chemnitz, Germany
[4] Tech Univ Carolo Wilhelmina Braunschweig, Inst Halbleitertech, Hans Sommer Str 66, D-38106 Braunschweig, Germany
[5] Tech Univ Carolo Wilhelmina Braunschweig, Lab Emerging Nanometrol LENA, Langer Kamp 6a, D-38106 Braunschweig, Germany
关键词
epitaxial graphene; argon gas flow; graphene buffer layer; large-scale graphene growth; resistance anisotropy; SiC terrace steps; monolayer graphene; freestanding monolayer graphene; freestanding bilayer graphene; polymer-assisted sublimation growth; EPITAXIAL GRAPHENE; GROWTH; DEFECTS;
D O I
10.1021/acsanm.8b02093
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this study, we first show that the argon flow during epitaxial graphene growth is an important parameter to control the quality of the buffer and the graphene layer. Atomic force microscopy (AFM) and low-energy electron diffraction (LEED) measurements reveal that the decomposition of the SiC substrate strongly depends on the Ar mass flow rate while pressure and temperature are kept constant. Our data are interpreted by a model based on the competition of the SiC decomposition rate, controlled by the Ar flow, with a uniform graphene buffer layer formation under the equilibrium process at the SiC surface. The proper choice of a set of growth parameters allows the growth of a defect-free, ultrasmooth, and coherent graphene-free buffer layer and bilayer-free monolayer graphene sheets which can be transformed into large-area high-quality quasi-free-standing monolayer and bilayer graphene by hydrogen intercalation. AFM, scanning tunneling microscopy, Raman spectroscopy, and electronic transport measurements underline the excellent homogeneity of the resulting quasi-free-standing layers. Electronic transport measurements in four-point probe configuration reveal a homogeneous low resistance anisotropy on both mu m and mm scales.
引用
收藏
页码:844 / 852
页数:17
相关论文
共 50 条
  • [41] Enhanced Raman spectra of hydrogen-intercalated quasi-free-standing monolayer graphene on 4H-SiC(0001)
    Grodecki, K.
    Jagiello, J.
    Dobrowolski, A.
    Czolak, D.
    Jozwik, I
    Ciuk, T.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2020, 117
  • [42] Quasi-Free-Standing Epitaxial Graphene on SiC (0001) by Fluorine Intercalation from a Molecular Source
    Wong, Swee Liang
    Huang, Han
    Wang, Yuzhan
    Cao, Liang
    Qi, Dongchen
    Santoso, Iman
    Chen, Wei
    Wee, Andrew Thye Shen
    ACS NANO, 2011, 5 (09) : 7662 - 7668
  • [43] Structure of quasi-free-standing graphene on the SiC (0001) surface prepared by the rapid cooling method
    Sumi, Tatsuya
    Nagai, Kazuki
    Bao, Jianfeng
    Terasawa, Tomo-o
    Norimatsu, Wataru
    Kusunoki, Michiko
    Wakabayashi, Yusuke
    APPLIED PHYSICS LETTERS, 2020, 117 (14)
  • [44] Preparation of Quasi-Free-Standing Graphene with a Super Large Interlayer Distance by Methane Intercalation
    Huang, Qingsong
    Chen, Xiaolong
    Lin, Jingjing
    Li, Kang
    Jia, Yuping
    Liu, Jun
    Guo, Liwei
    Wang, Wenjun
    Wang, Gang
    JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (42): : 20538 - 20545
  • [45] High thermal stability quasi-free-standing bilayer graphene formed on 4H-SiC(0001) via platinum intercalation
    Xia, Chao
    Johansson, Leif I.
    Niu, Yuran
    Zakharov, Alexei A.
    Janzen, Erik
    Virojanadara, Chariya
    CARBON, 2014, 79 : 631 - 635
  • [46] Electron-phonon coupling in quasi-free-standing graphene
    Johannsen, Jens Christian
    Ulstrup, Soren
    Bianchi, Marco
    Hatch, Richard
    Guan, Dandan
    Mazzola, Federico
    Hornekaer, Liv
    Fromm, Felix
    Raidel, Christian
    Seyller, Thomas
    Hofmann, Philip
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2013, 25 (09)
  • [47] Origin of Doping in Quasi-Free-Standing Graphene on Silicon Carbide
    Ristein, J.
    Mammadov, S.
    Seyller, Th
    PHYSICAL REVIEW LETTERS, 2012, 108 (24)
  • [48] Probing Local Hydrogen Impurities in Quasi-Free-Standing Graphene
    Scheffler, Martha
    Haberer, Danny
    Petaccia, Luca
    Farjam, Mani
    Schlegel, Ronny
    Baumann, Danny
    Haenke, Torben
    Grueneis, Alexander
    Knupfer, Martin
    Hess, Christian
    Buechner, Bernd
    ACS NANO, 2012, 6 (12) : 10590 - 10597
  • [49] Tunable Band Gap in Hydrogenated Quasi-Free-standing Graphene
    Haberer, D.
    Vyalikh, D. V.
    Taioli, S.
    Dora, B.
    Farjam, M.
    Fink, J.
    Marchenko, D.
    Pichler, T.
    Ziegler, K.
    Simonucci, S.
    Dresselhaus, M. S.
    Knupfer, M.
    Buechner, B.
    Grueneis, A.
    NANO LETTERS, 2010, 10 (09) : 3360 - 3366
  • [50] The role of defects in graphene on the H-terminated SiC surface: Not quasi-free-standing any more
    Slawinska, Jagoda
    Cerda, Jorge I.
    CARBON, 2014, 74 : 146 - 152