Homogeneous Large-Area Quasi-Free-Standing Monolayer and Bilayer Graphene on SiC

被引:26
|
作者
Pakdehi, D. Momeni [1 ]
Pierz, K. [1 ]
Wundrack, S. [1 ]
Aprojanz, J. [2 ]
Nguyen, T. T. N. [3 ]
Dziomba, T. [1 ]
Hohls, F. [1 ]
Bakin, A. [4 ,5 ]
Stosch, R. [1 ]
Tegenkamp, C. [2 ,3 ]
Ahlers, F. J. [1 ]
Schumacher, H. W. [1 ]
机构
[1] Phys Tech Bundesanstalt, Bundesallee 100, D-38116 Braunschweig, Germany
[2] Leibniz Univ Hannover, Inst Festkorperphys, Appelstr 2, D-30167 Hannover, Germany
[3] Tech Univ Chemnitz, Inst Phys, Reichenhainer Str 70, D-09126 Chemnitz, Germany
[4] Tech Univ Carolo Wilhelmina Braunschweig, Inst Halbleitertech, Hans Sommer Str 66, D-38106 Braunschweig, Germany
[5] Tech Univ Carolo Wilhelmina Braunschweig, Lab Emerging Nanometrol LENA, Langer Kamp 6a, D-38106 Braunschweig, Germany
关键词
epitaxial graphene; argon gas flow; graphene buffer layer; large-scale graphene growth; resistance anisotropy; SiC terrace steps; monolayer graphene; freestanding monolayer graphene; freestanding bilayer graphene; polymer-assisted sublimation growth; EPITAXIAL GRAPHENE; GROWTH; DEFECTS;
D O I
10.1021/acsanm.8b02093
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this study, we first show that the argon flow during epitaxial graphene growth is an important parameter to control the quality of the buffer and the graphene layer. Atomic force microscopy (AFM) and low-energy electron diffraction (LEED) measurements reveal that the decomposition of the SiC substrate strongly depends on the Ar mass flow rate while pressure and temperature are kept constant. Our data are interpreted by a model based on the competition of the SiC decomposition rate, controlled by the Ar flow, with a uniform graphene buffer layer formation under the equilibrium process at the SiC surface. The proper choice of a set of growth parameters allows the growth of a defect-free, ultrasmooth, and coherent graphene-free buffer layer and bilayer-free monolayer graphene sheets which can be transformed into large-area high-quality quasi-free-standing monolayer and bilayer graphene by hydrogen intercalation. AFM, scanning tunneling microscopy, Raman spectroscopy, and electronic transport measurements underline the excellent homogeneity of the resulting quasi-free-standing layers. Electronic transport measurements in four-point probe configuration reveal a homogeneous low resistance anisotropy on both mu m and mm scales.
引用
收藏
页码:844 / 852
页数:17
相关论文
共 50 条
  • [31] Formation of high-quality quasi-free-standing bilayer graphene on SiC(0001) by oxygen intercalation upon annealing in air
    Oliveira, Myriano H., Jr.
    Schumann, Timo
    Fromm, Felix
    Koch, Roland
    Ostler, Markus
    Ramsteiner, Manfred
    Seyller, Thomas
    Lopes, Joao Marcelo J.
    Riechert, Henning
    CARBON, 2013, 52 : 83 - 89
  • [32] Fabricating Quasi-Free-Standing Graphene on a SiC(0001) Surface by Steerable Intercalation of Iron
    Shen, Kongchao
    Sun, Haoliang
    Hu, Jinping
    Hu, Huinbang
    Liang, Zhaofeng
    Li, Haiyang
    Zhu, Zhiyuan
    Huang, Yaobo
    Kong, Lingyuan
    Wang, Yu
    Jiang, Zheng
    Huang, Han
    Wells, Justin W.
    Song, Fei
    JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (37): : 21484 - 21492
  • [33] The impact of partial H intercalation on the quasi-free-standing properties of graphene on SiC(0001)
    Szary, Maciej J.
    El-Ahmar, Semir
    Ciuk, Tymoteusz
    APPLIED SURFACE SCIENCE, 2021, 541 (541)
  • [34] Spectroscopic properties of close-to-perfect-monolayer quasi-free-standing epitaxial graphene on 6H-SiC(0001)
    Dobrowolski, Artur
    Jagiello, Jakub
    Pietak-Jurczak, Karolina
    Wzorek, Marek
    Czolak, Dariusz
    Ciuk, Tymoteusz
    APPLIED SURFACE SCIENCE, 2024, 642
  • [35] Quasi-free-standing monolayer hexagonal boron nitride on Ni
    Suzuki, Satoru
    Haruyama, Yuichi
    Niibe, Masahito
    Tokushima, Takashi
    Yamaguchi, Akinobu
    Utsumi, Yuichi
    Ito, Atsushi
    Kadowaki, Ryo
    Maruta, Akane
    Abukawa, Tadashi
    MATERIALS RESEARCH EXPRESS, 2019, 6 (01):
  • [36] Reversible hydrogenation of deuterium-intercalated quasi-free-standing graphene on SiC(0001)
    Bocquet, F. C.
    Bisson, R.
    Themlin, J. -M.
    Layet, J. -M.
    Angot, T.
    PHYSICAL REVIEW B, 2012, 85 (20):
  • [37] A table-top formation of bilayer quasi-free-standing epitaxial-graphene on SiC(0001) by microwave annealing in air
    Kim, Kwan-Soo
    Park, Goon-Ho
    Fukidome, Hirokazu
    Takashi, Someya
    Takushi, Iimori
    Fumio, Komori
    Iwao, Matsuda
    Suemitsu, Maki
    CARBON, 2018, 130 : 792 - 798
  • [38] Quasi-free-standing bilayer epitaxial graphene field-effect transistors on 4H-SiC (0001) substrates
    Yu, C.
    He, Z. Z.
    Li, J.
    Song, X. B.
    Liu, Q. B.
    Cai, S. J.
    Feng, Z. H.
    APPLIED PHYSICS LETTERS, 2016, 108 (01)
  • [39] Doping modulation of quasi-free-standing monolayer graphene formed on SiC(0001) through Sn1-xGex intercalation
    Kim, Hidong
    Dugerjav, Otgonbayar
    Lkhagvasuren, Altaibaatar
    Seo, Jae M.
    CARBON, 2019, 144 : 549 - 556
  • [40] Electronic properties of hydrogenated quasi-free-standing graphene
    Haberer, D.
    Petaccia, L.
    Wang, Y.
    Quian, H.
    Farjam, M.
    Jafari, S. A.
    Sachdev, H.
    Federov, A. V.
    Usachov, D.
    Vyalikh, D. V.
    Liu, X.
    Vilkov, O.
    Adamchuk, V. K.
    Irle, S.
    Knupfer, M.
    Buechner, B.
    Grueneis, A.
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2011, 248 (11): : 2639 - 2643