IBaggedFCNet: An Ensemble Framework for Anomaly Detection in Surveillance Videos

被引:7
|
作者
Zahid, Yumna [1 ]
Tahir, Muhammad Atif [1 ]
Durrani, Nouman M. [1 ]
Bouridane, Ahmed [2 ]
机构
[1] Natl Univ Comp & Emerging Sci, Dept Comp Sci, Karachi Campus, Karachi 75030, Pakistan
[2] Northumbria Univ, Dept Comp & Informat Sci, Newcastle Upon Tyne NEI 8ST, Tyne & Wear, England
来源
IEEE ACCESS | 2020年 / 8卷
关键词
Videos; Feature extraction; Anomaly detection; Bagging; Surveillance; Training; Data models; feature learning; bagging ensemble;
D O I
10.1109/ACCESS.2020.3042222
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The prevalent use of surveillance cameras in public places and advancements in computer vision warrant most sought-after research in the domain of anomalous activity detection. Anomaly detection has shown promising applications for suspicious activity detection. In this paper, we propose a bagging framework IBaggedFCNet that leverages the power of ensembles for robust classification to detect anomalies in videos. Our approach, which investigates state-of-the-art Inception-v3 image classification network, requires no video segmentation prior to feature extraction that can produce unstable segmentation results and cause a high memory footprint. We show improvement empirically on multiple benchmark datasets, most prominently on the UCF-Crime dataset. Moreover, we experiment with different ensemble fusion methods, including static and dynamic techniques, and also prove our single model's predictive accuracy in localizing anomaly in surveillance videos.
引用
收藏
页码:220620 / 220630
页数:11
相关论文
共 50 条
  • [21] Normality learning reinforcement for anomaly detection in surveillance videos
    Cheng, Kai
    Zeng, Xinhua
    Liu, Yang
    Pan, Yaning
    Li, Xinzhe
    KNOWLEDGE-BASED SYSTEMS, 2024, 297
  • [22] Anomaly detection by exploiting the tracking trajectory in surveillance videos
    Zixuan Xue
    Wei Wu
    Science China Information Sciences, 2020, 63
  • [23] Anomaly detection in surveillance videos using deep autoencoder
    Mishra S.
    Jabin S.
    International Journal of Information Technology, 2024, 16 (2) : 1111 - 1122
  • [24] Deep anomaly detection through visual attention in surveillance videos
    Nasaruddin, Nasaruddin
    Muchtar, Kahlil
    Afdhal, Afdhal
    Dwiyantoro, Alvin Prayuda Juniarta
    JOURNAL OF BIG DATA, 2020, 7 (01)
  • [25] An Object-aware Anomaly Detection and Localization in Surveillance Videos
    Zang, Xianghao
    Li, Ge
    Li, Zhihao
    Li, Nannan
    Wang, Wenmin
    2016 IEEE SECOND INTERNATIONAL CONFERENCE ON MULTIMEDIA BIG DATA (BIGMM), 2016, : 113 - 116
  • [26] Moving-Object-Aware Anomaly Detection in Surveillance Videos
    Yang, Chun-Lung
    Wu, Tsung-Hsuan
    Lai, Shang-Hong
    2021 17TH IEEE INTERNATIONAL CONFERENCE ON ADVANCED VIDEO AND SIGNAL BASED SURVEILLANCE (AVSS 2021), 2021,
  • [27] Anomaly detection in surveillance videos using Transformer with margin learning
    Wang, Dicong
    Wu, Kaijun
    MULTIMEDIA SYSTEMS, 2024, 30 (05)
  • [28] A Deep Learning Based Technique for Anomaly Detection in Surveillance Videos
    Singh, Prakhar
    Pankajakshan, Vinod
    2018 TWENTY FOURTH NATIONAL CONFERENCE ON COMMUNICATIONS (NCC), 2018,
  • [29] Anomaly Detection in Traffic Surveillance Videos Using Deep Learning
    Khan, Sardar Waqar
    Hafeez, Qasim
    Khalid, Muhammad Irfan
    Alroobaea, Roobaea
    Hussain, Saddam
    Iqbal, Jawaid
    Almotiri, Jasem
    Ullah, Syed Sajid
    SENSORS, 2022, 22 (17)
  • [30] Any-Shot Sequential Anomaly Detection in Surveillance Videos
    Doshi, Keval
    Yilmaz, Yasin
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2020), 2020, : 4037 - 4042