Anomaly detection in surveillance videos using Transformer with margin learning

被引:0
|
作者
Wang, Dicong [1 ,2 ]
Wu, Kaijun [2 ]
机构
[1] Tianjin Univ, Coll Intelligence & Comp, Tianjin 300354, Peoples R China
[2] Lanzhou Jiaotong Univ, Sch Elect & Informat Engn, Lanzhou 730070, Peoples R China
基金
中国国家自然科学基金;
关键词
Video anomaly detection; Transformer; Multi-instance learning; Continuity; NETWORK;
D O I
10.1007/s00530-024-01443-4
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Weakly supervised video anomaly detection (WSVAD) constitutes a highly research-oriented and challenging project within the domains of image and video processing. In prior studies of WSVAD, it has typically been formulated as a multiple-instance learning (MIL) problem. However, quite a few of these methods tend to primarily concentrate on time periods when anomalies occur discernibly. To recognize anomalous events, they rely solely on detecting significant changes in appearance or motion, ignoring the temporal completeness or continuity that anomalous events possess by nature. In addition, they also disregard the subtle correlations at the transitional boundaries between normal and abnormal states. Therefore, we propose a weakly supervised learning approach based on Transformer with margin learning for video anomaly detection. Specifically, our network effectively captures temporal changes around the occurrence of anomalies by utilizing the benefits of Transformer blocks, which are adept at capturing long-range dependencies in anomalous events. Secondly, to tackle challenging cases, i.e., normal events with high similarity to anomalous events, we employed a hard score memory. The purpose of this memory is to store the anomaly scores of hard samples, enabling iterative optimization training on those hard instances. Additionally, to bolster the discriminative capability of the model at the score level, we utilize pseudo-labels for anomalous events to provide supplementary support in detection. Experiments were conducted on two large-scale datasets, namely the ShanghaiTech dataset and the UCF-Crime dataset, and they achieved highly favorable results. The results of the experiments demonstrate that the proposed method is sensitive to anomalous events while performing competitively against state-of-the-art methods.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Anomaly Detection in Traffic Surveillance Videos Using Deep Learning
    Khan, Sardar Waqar
    Hafeez, Qasim
    Khalid, Muhammad Irfan
    Alroobaea, Roobaea
    Hussain, Saddam
    Iqbal, Jawaid
    Almotiri, Jasem
    Ullah, Syed Sajid
    SENSORS, 2022, 22 (17)
  • [2] Continual Learning for Anomaly Detection in Surveillance Videos
    Doshi, Keval
    Yilmaz, Yasin
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2020), 2020, : 1025 - 1034
  • [3] Joint Representation Learning for Anomaly Detection in Surveillance Videos
    Saypadith, Savath
    Onoye, Takao
    2022 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS 22), 2022,
  • [4] Normality learning reinforcement for anomaly detection in surveillance videos
    Cheng, Kai
    Zeng, Xinhua
    Liu, Yang
    Pan, Yaning
    Li, Xinzhe
    KNOWLEDGE-BASED SYSTEMS, 2024, 297
  • [5] Anomaly Detection in Surveillance Videos
    Anala, M. R.
    Makker, Malika
    Ashok, Aakanksha
    2019 26TH INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING, DATA AND ANALYTICS WORKSHOP (HIPCW 2019), 2019, : 93 - 98
  • [6] Anomaly Detection in Surveillance Videos
    Bhakat, Sukalyan
    Ramakrishnan, Ganesh
    PROCEEDINGS OF THE 6TH ACM IKDD CODS AND 24TH COMAD, 2019, : 252 - 255
  • [7] Anomaly detection in surveillance videos using deep autoencoder
    Mishra S.
    Jabin S.
    International Journal of Information Technology, 2024, 16 (2) : 1111 - 1122
  • [8] A Deep Learning Based Technique for Anomaly Detection in Surveillance Videos
    Singh, Prakhar
    Pankajakshan, Vinod
    2018 TWENTY FOURTH NATIONAL CONFERENCE ON COMMUNICATIONS (NCC), 2018,
  • [9] Anomaly detection in surveillance videos: A survey
    Wang Z.
    Zhang Y.
    Qinghua Daxue Xuebao/Journal of Tsinghua University, 2020, 60 (06): : 518 - 529
  • [10] Survey on anomaly detection in surveillance videos
    Anoopa, S.
    Salim, A.
    MATERIALS TODAY-PROCEEDINGS, 2022, 58 : 162 - 167