Anomaly detection in surveillance videos using Transformer with margin learning

被引:0
|
作者
Wang, Dicong [1 ,2 ]
Wu, Kaijun [2 ]
机构
[1] Tianjin Univ, Coll Intelligence & Comp, Tianjin 300354, Peoples R China
[2] Lanzhou Jiaotong Univ, Sch Elect & Informat Engn, Lanzhou 730070, Peoples R China
基金
中国国家自然科学基金;
关键词
Video anomaly detection; Transformer; Multi-instance learning; Continuity; NETWORK;
D O I
10.1007/s00530-024-01443-4
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Weakly supervised video anomaly detection (WSVAD) constitutes a highly research-oriented and challenging project within the domains of image and video processing. In prior studies of WSVAD, it has typically been formulated as a multiple-instance learning (MIL) problem. However, quite a few of these methods tend to primarily concentrate on time periods when anomalies occur discernibly. To recognize anomalous events, they rely solely on detecting significant changes in appearance or motion, ignoring the temporal completeness or continuity that anomalous events possess by nature. In addition, they also disregard the subtle correlations at the transitional boundaries between normal and abnormal states. Therefore, we propose a weakly supervised learning approach based on Transformer with margin learning for video anomaly detection. Specifically, our network effectively captures temporal changes around the occurrence of anomalies by utilizing the benefits of Transformer blocks, which are adept at capturing long-range dependencies in anomalous events. Secondly, to tackle challenging cases, i.e., normal events with high similarity to anomalous events, we employed a hard score memory. The purpose of this memory is to store the anomaly scores of hard samples, enabling iterative optimization training on those hard instances. Additionally, to bolster the discriminative capability of the model at the score level, we utilize pseudo-labels for anomalous events to provide supplementary support in detection. Experiments were conducted on two large-scale datasets, namely the ShanghaiTech dataset and the UCF-Crime dataset, and they achieved highly favorable results. The results of the experiments demonstrate that the proposed method is sensitive to anomalous events while performing competitively against state-of-the-art methods.
引用
收藏
页数:13
相关论文
共 50 条
  • [11] Anomaly Detection Techniques in Surveillance Videos
    Li, Xiaoli
    Cai, Ze-min
    2016 9TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI 2016), 2016, : 54 - 59
  • [12] A Scalable and Generalised Deep Learning Framework for Anomaly Detection in Surveillance Videos
    Jebur, Sabah Abdulazeez
    Alzubaidi, Laith
    Saihood, Ahmed
    Hussein, Khalid A.
    Hoomod, Haider Kadhim
    Gu, Yuantong
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2025, 2025 (01)
  • [13] A Comprehensive Survey of Machine Learning Methods for Surveillance Videos Anomaly Detection
    Choudhry, Nomica
    Abawajy, Jemal
    Huda, Shamsul
    Rao, Imran
    IEEE ACCESS, 2023, 11 : 114680 - 114713
  • [14] Application of Deep Learning for Crowd Anomaly Detection from Surveillance Videos
    Pawar, Karishma
    Attar, Vahida
    2021 11TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING, DATA SCIENCE & ENGINEERING (CONFLUENCE 2021), 2021, : 506 - 511
  • [15] ENSEMBLE LEARNING USING BAGGING AND INCEPTION-V3 FOR ANOMALY DETECTION IN SURVEILLANCE VIDEOS
    Zahid, Yumna
    Tahir, Muhammad Atif
    Durrani, Muhammad Nouman
    2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 588 - 592
  • [16] Anomaly Detection and Location in Crowded Surveillance Videos
    Zhou Peipei
    Ding Qinghai
    Luo Haibo
    Hou Xinglin
    ACTA OPTICA SINICA, 2018, 38 (08)
  • [17] Anomaly Event Detection Using Generative Adversarial Network for Surveillance Videos
    Ganokratanaa, Thittaporn
    Aramvith, Supavadee
    Sebe, Nicu
    2019 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2019, : 1395 - 1399
  • [18] Detection of anomaly in surveillance videos using quantum convolutional neural networks
    Amin, Javaria
    Anjum, Muhammad Almas
    Ibrar, Kainat
    Sharif, Muhammad
    Kadry, Seifedine
    Crespo, Ruben Gonzalez
    IMAGE AND VISION COMPUTING, 2023, 135
  • [19] Cross-Epoch Learning for Weakly Supervised Anomaly Detection in Surveillance Videos
    Yu, Shenghao
    Wang, Chong
    Mao, Qiaomei
    Li, Yuqi
    Wu, Jiafei
    IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 2137 - 2141
  • [20] Anomaly Detection in Surveillance Videos Using Regression With Recurrent Neural Networks
    Yagan, Mehmet
    Yilmaz, E. Alaattin
    Ozkan, Huseyin
    2022 30TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU, 2022,