Anomaly detection in surveillance videos using Transformer with margin learning

被引:0
|
作者
Wang, Dicong [1 ,2 ]
Wu, Kaijun [2 ]
机构
[1] Tianjin Univ, Coll Intelligence & Comp, Tianjin 300354, Peoples R China
[2] Lanzhou Jiaotong Univ, Sch Elect & Informat Engn, Lanzhou 730070, Peoples R China
基金
中国国家自然科学基金;
关键词
Video anomaly detection; Transformer; Multi-instance learning; Continuity; NETWORK;
D O I
10.1007/s00530-024-01443-4
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Weakly supervised video anomaly detection (WSVAD) constitutes a highly research-oriented and challenging project within the domains of image and video processing. In prior studies of WSVAD, it has typically been formulated as a multiple-instance learning (MIL) problem. However, quite a few of these methods tend to primarily concentrate on time periods when anomalies occur discernibly. To recognize anomalous events, they rely solely on detecting significant changes in appearance or motion, ignoring the temporal completeness or continuity that anomalous events possess by nature. In addition, they also disregard the subtle correlations at the transitional boundaries between normal and abnormal states. Therefore, we propose a weakly supervised learning approach based on Transformer with margin learning for video anomaly detection. Specifically, our network effectively captures temporal changes around the occurrence of anomalies by utilizing the benefits of Transformer blocks, which are adept at capturing long-range dependencies in anomalous events. Secondly, to tackle challenging cases, i.e., normal events with high similarity to anomalous events, we employed a hard score memory. The purpose of this memory is to store the anomaly scores of hard samples, enabling iterative optimization training on those hard instances. Additionally, to bolster the discriminative capability of the model at the score level, we utilize pseudo-labels for anomalous events to provide supplementary support in detection. Experiments were conducted on two large-scale datasets, namely the ShanghaiTech dataset and the UCF-Crime dataset, and they achieved highly favorable results. The results of the experiments demonstrate that the proposed method is sensitive to anomalous events while performing competitively against state-of-the-art methods.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Cross-epoch learning for weakly supervised anomaly detection in surveillance videos
    Yu, Shenghao
    Wang, Chong
    Mao, Qiaomei
    Li, Yuqi
    Wu, Jiafei
    IEEE Signal Processing Letters, 2021, 28 : 2137 - 2141
  • [22] Improving Traffic Surveillance: Deep Learning Approach for Road Anomaly Detection in Videos
    Natha, Sarfaraz
    Arif, Muhammad
    Jamil, Syed Shahryar
    Jokhio, Fareed Ahmed
    Syed, Muslim Jameel
    2024 IEEE 3RD INTERNATIONAL CONFERENCE ON COMPUTING AND MACHINE INTELLIGENCE, ICMI 2024, 2024,
  • [23] Enhancing Anomaly Detection in Surveillance Videos with Transfer Learning from Action Recognition
    Liu, Kun
    Zhu, Minzhi
    Fu, Huiyuan
    Ma, Huadong
    Chua, Tat-Seng
    MM '20: PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, 2020, : 4664 - 4668
  • [24] Selection Biased Positive and Unlabeled Learning Method for Anomaly Detection in Surveillance Videos
    Shang, Feiyu
    Mu, Huiyu
    Qi, Shanshan
    Sun, Ruizhi
    PROCEEDINGS OF THE 2021 IEEE 24TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN (CSCWD), 2021, : 849 - 854
  • [25] Efficient anomaly recognition using surveillance videos
    Saleem G.
    Bajwa U.I.
    Raza R.H.
    Alqahtani F.H.
    Tolba A.
    Xia F.
    PeerJ Computer Science, 2022, 8
  • [26] Efficient anomaly recognition using surveillance videos
    Saleem, Gulshan
    Bajwa, Usama Ijaz
    Raza, Rana Hammad
    Alqahtani, Fayez Hussain
    Tolba, Amr
    Xia, Feng
    PEERJ COMPUTER SCIENCE, 2022, 8
  • [27] IBaggedFCNet: An Ensemble Framework for Anomaly Detection in Surveillance Videos
    Zahid, Yumna
    Tahir, Muhammad Atif
    Durrani, Nouman M.
    Bouridane, Ahmed
    IEEE ACCESS, 2020, 8 : 220620 - 220630
  • [28] Real-world Anomaly Detection in Surveillance Videos
    Sultani, Waqas
    Chen, Chen
    Shah, Mubarak
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 6479 - 6488
  • [29] OBJECT-ORIENTED ANOMALY DETECTION IN SURVEILLANCE VIDEOS
    Li, Xiaodan
    Li, Weihai
    Liu, Bin
    Liu, Qiankun
    Yu, Nenghai
    2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 1907 - 1911
  • [30] Anomaly Detection in Videos Recorded by Drones in a Surveillance Context
    Henrio, Jordan
    Nakashima, Tomoharu
    2018 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2018, : 2503 - 2508