IBaggedFCNet: An Ensemble Framework for Anomaly Detection in Surveillance Videos

被引:7
|
作者
Zahid, Yumna [1 ]
Tahir, Muhammad Atif [1 ]
Durrani, Nouman M. [1 ]
Bouridane, Ahmed [2 ]
机构
[1] Natl Univ Comp & Emerging Sci, Dept Comp Sci, Karachi Campus, Karachi 75030, Pakistan
[2] Northumbria Univ, Dept Comp & Informat Sci, Newcastle Upon Tyne NEI 8ST, Tyne & Wear, England
来源
IEEE ACCESS | 2020年 / 8卷
关键词
Videos; Feature extraction; Anomaly detection; Bagging; Surveillance; Training; Data models; feature learning; bagging ensemble;
D O I
10.1109/ACCESS.2020.3042222
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The prevalent use of surveillance cameras in public places and advancements in computer vision warrant most sought-after research in the domain of anomalous activity detection. Anomaly detection has shown promising applications for suspicious activity detection. In this paper, we propose a bagging framework IBaggedFCNet that leverages the power of ensembles for robust classification to detect anomalies in videos. Our approach, which investigates state-of-the-art Inception-v3 image classification network, requires no video segmentation prior to feature extraction that can produce unstable segmentation results and cause a high memory footprint. We show improvement empirically on multiple benchmark datasets, most prominently on the UCF-Crime dataset. Moreover, we experiment with different ensemble fusion methods, including static and dynamic techniques, and also prove our single model's predictive accuracy in localizing anomaly in surveillance videos.
引用
收藏
页码:220620 / 220630
页数:11
相关论文
共 50 条
  • [1] Anomaly Detection in Surveillance Videos
    Anala, M. R.
    Makker, Malika
    Ashok, Aakanksha
    2019 26TH INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING, DATA AND ANALYTICS WORKSHOP (HIPCW 2019), 2019, : 93 - 98
  • [2] Anomaly Detection in Surveillance Videos
    Bhakat, Sukalyan
    Ramakrishnan, Ganesh
    PROCEEDINGS OF THE 6TH ACM IKDD CODS AND 24TH COMAD, 2019, : 252 - 255
  • [3] A Scalable and Generalized Deep Ensemble Model for Road Anomaly Detection in Surveillance Videos
    Natha, Sarfaraz
    Jokhio, Fareed A.
    Laghari, Mehwish
    Siraj, Mohammad
    Alsaif, Saif A.
    Ashraf, Usman
    Ali, Asghar
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 81 (03): : 3707 - 3729
  • [4] A Scalable and Generalised Deep Learning Framework for Anomaly Detection in Surveillance Videos
    Jebur, Sabah Abdulazeez
    Alzubaidi, Laith
    Saihood, Ahmed
    Hussein, Khalid A.
    Hoomod, Haider Kadhim
    Gu, Yuantong
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2025, 2025 (01)
  • [5] Anomaly detection in surveillance videos: A survey
    Wang Z.
    Zhang Y.
    Qinghua Daxue Xuebao/Journal of Tsinghua University, 2020, 60 (06): : 518 - 529
  • [6] Survey on anomaly detection in surveillance videos
    Anoopa, S.
    Salim, A.
    MATERIALS TODAY-PROCEEDINGS, 2022, 58 : 162 - 167
  • [7] Anomaly Detection Techniques in Surveillance Videos
    Li, Xiaoli
    Cai, Ze-min
    2016 9TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI 2016), 2016, : 54 - 59
  • [8] Continual Learning for Anomaly Detection in Surveillance Videos
    Doshi, Keval
    Yilmaz, Yasin
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2020), 2020, : 1025 - 1034
  • [9] Anomaly Detection and Location in Crowded Surveillance Videos
    Zhou Peipei
    Ding Qinghai
    Luo Haibo
    Hou Xinglin
    ACTA OPTICA SINICA, 2018, 38 (08)
  • [10] An Efficient and Robust Unsupervised Anomaly Detection Method Using Ensemble Random Projection in Surveillance Videos
    Hu, Jingtao
    Zhu, En
    Wang, Siqi
    Liu, Xinwang
    Guo, Xifeng
    Yin, Jianping
    SENSORS, 2019, 19 (19)