Continual Learning for Anomaly Detection in Surveillance Videos

被引:61
|
作者
Doshi, Keval [1 ]
Yilmaz, Yasin [1 ]
机构
[1] Univ S Florida, 4202 E Fowler Ave, Tampa, FL 33620 USA
关键词
HISTOGRAMS;
D O I
10.1109/CVPRW50498.2020.00135
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Anomaly detection in surveillance videos has been recently gaining attention. A challenging aspect of high-dimensional applications such as video surveillance is continual learning. While current state-of-the-art deep learning approaches perform well on existing public datasets, they fail to work in a continual learning framework due to computational and storage issues. Furthermore, online decision making is an important but mostly neglected factor in this domain. Motivated by these research gaps, we propose an online anomaly detection method for surveillance videos using transfer learning and continual learning, which in turn significantly reduces the training complexity and provides a mechanism for continually learning from recent data without suffering from catastrophic forgetting. Our proposed algorithm leverages the feature extraction power of neural network-based models for transfer learning, and the continual learning capability of statistical detection methods.
引用
收藏
页码:1025 / 1034
页数:10
相关论文
共 50 条
  • [1] Joint Representation Learning for Anomaly Detection in Surveillance Videos
    Saypadith, Savath
    Onoye, Takao
    2022 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS 22), 2022,
  • [2] Normality learning reinforcement for anomaly detection in surveillance videos
    Cheng, Kai
    Zeng, Xinhua
    Liu, Yang
    Pan, Yaning
    Li, Xinzhe
    KNOWLEDGE-BASED SYSTEMS, 2024, 297
  • [3] Anomaly Detection in Surveillance Videos
    Anala, M. R.
    Makker, Malika
    Ashok, Aakanksha
    2019 26TH INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING, DATA AND ANALYTICS WORKSHOP (HIPCW 2019), 2019, : 93 - 98
  • [4] Anomaly Detection in Surveillance Videos
    Bhakat, Sukalyan
    Ramakrishnan, Ganesh
    PROCEEDINGS OF THE 6TH ACM IKDD CODS AND 24TH COMAD, 2019, : 252 - 255
  • [5] Anomaly detection in surveillance videos using Transformer with margin learning
    Wang, Dicong
    Wu, Kaijun
    MULTIMEDIA SYSTEMS, 2024, 30 (05)
  • [6] A Deep Learning Based Technique for Anomaly Detection in Surveillance Videos
    Singh, Prakhar
    Pankajakshan, Vinod
    2018 TWENTY FOURTH NATIONAL CONFERENCE ON COMMUNICATIONS (NCC), 2018,
  • [7] Anomaly Detection in Traffic Surveillance Videos Using Deep Learning
    Khan, Sardar Waqar
    Hafeez, Qasim
    Khalid, Muhammad Irfan
    Alroobaea, Roobaea
    Hussain, Saddam
    Iqbal, Jawaid
    Almotiri, Jasem
    Ullah, Syed Sajid
    SENSORS, 2022, 22 (17)
  • [8] Anomaly detection in surveillance videos: A survey
    Wang Z.
    Zhang Y.
    Qinghua Daxue Xuebao/Journal of Tsinghua University, 2020, 60 (06): : 518 - 529
  • [9] Survey on anomaly detection in surveillance videos
    Anoopa, S.
    Salim, A.
    MATERIALS TODAY-PROCEEDINGS, 2022, 58 : 162 - 167
  • [10] Anomaly Detection Techniques in Surveillance Videos
    Li, Xiaoli
    Cai, Ze-min
    2016 9TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI 2016), 2016, : 54 - 59