Continual Learning for Anomaly Detection in Surveillance Videos

被引:61
|
作者
Doshi, Keval [1 ]
Yilmaz, Yasin [1 ]
机构
[1] Univ S Florida, 4202 E Fowler Ave, Tampa, FL 33620 USA
关键词
HISTOGRAMS;
D O I
10.1109/CVPRW50498.2020.00135
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Anomaly detection in surveillance videos has been recently gaining attention. A challenging aspect of high-dimensional applications such as video surveillance is continual learning. While current state-of-the-art deep learning approaches perform well on existing public datasets, they fail to work in a continual learning framework due to computational and storage issues. Furthermore, online decision making is an important but mostly neglected factor in this domain. Motivated by these research gaps, we propose an online anomaly detection method for surveillance videos using transfer learning and continual learning, which in turn significantly reduces the training complexity and provides a mechanism for continually learning from recent data without suffering from catastrophic forgetting. Our proposed algorithm leverages the feature extraction power of neural network-based models for transfer learning, and the continual learning capability of statistical detection methods.
引用
收藏
页码:1025 / 1034
页数:10
相关论文
共 50 条
  • [31] Multi-Channel Generative Framework and Supervised Learning for Anomaly Detection in Surveillance Videos
    Vu, Tuan-Hung
    Boonaert, Jacques
    Ambellouis, Sebastien
    Taleb-Ahmed, Abdelmalik
    SENSORS, 2021, 21 (09)
  • [32] Rethinking Video Anomaly Detection - A Continual Learning Approach
    Doshi, Keval
    Yilmaz, Yasin
    2022 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2022), 2022, : 3036 - 3045
  • [33] ENSEMBLE LEARNING USING BAGGING AND INCEPTION-V3 FOR ANOMALY DETECTION IN SURVEILLANCE VIDEOS
    Zahid, Yumna
    Tahir, Muhammad Atif
    Durrani, Muhammad Nouman
    2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 588 - 592
  • [34] Deep anomaly detection through visual attention in surveillance videos
    Nasaruddin, Nasaruddin
    Muchtar, Kahlil
    Afdhal, Afdhal
    Dwiyantoro, Alvin Prayuda Juniarta
    JOURNAL OF BIG DATA, 2020, 7 (01)
  • [35] An Object-aware Anomaly Detection and Localization in Surveillance Videos
    Zang, Xianghao
    Li, Ge
    Li, Zhihao
    Li, Nannan
    Wang, Wenmin
    2016 IEEE SECOND INTERNATIONAL CONFERENCE ON MULTIMEDIA BIG DATA (BIGMM), 2016, : 113 - 116
  • [36] Moving-Object-Aware Anomaly Detection in Surveillance Videos
    Yang, Chun-Lung
    Wu, Tsung-Hsuan
    Lai, Shang-Hong
    2021 17TH IEEE INTERNATIONAL CONFERENCE ON ADVANCED VIDEO AND SIGNAL BASED SURVEILLANCE (AVSS 2021), 2021,
  • [37] Any-Shot Sequential Anomaly Detection in Surveillance Videos
    Doshi, Keval
    Yilmaz, Yasin
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2020), 2020, : 4037 - 4042
  • [38] Anomaly Event Detection based on People Trajectories for Surveillance Videos
    Mora Colque, Rensso
    Cayllahua, Edward
    de Melo, Victor C.
    Chavez, Guillermo Camara
    Schwartz, William Robson
    PROCEEDINGS OF THE 15TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS, VOL 5: VISAPP, 2020, : 107 - 116
  • [39] Exploring Background-bias for Anomaly Detection in Surveillance Videos
    Liu, Kun
    Ma, Huadong
    PROCEEDINGS OF THE 27TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA (MM'19), 2019, : 1490 - 1499
  • [40] Deep anomaly detection through visual attention in surveillance videos
    Nasaruddin Nasaruddin
    Kahlil Muchtar
    Afdhal Afdhal
    Alvin Prayuda Juniarta Dwiyantoro
    Journal of Big Data, 7