IBaggedFCNet: An Ensemble Framework for Anomaly Detection in Surveillance Videos

被引:7
|
作者
Zahid, Yumna [1 ]
Tahir, Muhammad Atif [1 ]
Durrani, Nouman M. [1 ]
Bouridane, Ahmed [2 ]
机构
[1] Natl Univ Comp & Emerging Sci, Dept Comp Sci, Karachi Campus, Karachi 75030, Pakistan
[2] Northumbria Univ, Dept Comp & Informat Sci, Newcastle Upon Tyne NEI 8ST, Tyne & Wear, England
来源
IEEE ACCESS | 2020年 / 8卷
关键词
Videos; Feature extraction; Anomaly detection; Bagging; Surveillance; Training; Data models; feature learning; bagging ensemble;
D O I
10.1109/ACCESS.2020.3042222
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The prevalent use of surveillance cameras in public places and advancements in computer vision warrant most sought-after research in the domain of anomalous activity detection. Anomaly detection has shown promising applications for suspicious activity detection. In this paper, we propose a bagging framework IBaggedFCNet that leverages the power of ensembles for robust classification to detect anomalies in videos. Our approach, which investigates state-of-the-art Inception-v3 image classification network, requires no video segmentation prior to feature extraction that can produce unstable segmentation results and cause a high memory footprint. We show improvement empirically on multiple benchmark datasets, most prominently on the UCF-Crime dataset. Moreover, we experiment with different ensemble fusion methods, including static and dynamic techniques, and also prove our single model's predictive accuracy in localizing anomaly in surveillance videos.
引用
收藏
页码:220620 / 220630
页数:11
相关论文
共 50 条
  • [41] A Three-Stage Anomaly Detection Framework for Traffic Videos
    Chen, Junzhou
    Wang, Jiancheng
    Pu, Jiajun
    Zhang, Ronghui
    JOURNAL OF ADVANCED TRANSPORTATION, 2022, 2022
  • [42] Anomaly Event Detection Using Generative Adversarial Network for Surveillance Videos
    Ganokratanaa, Thittaporn
    Aramvith, Supavadee
    Sebe, Nicu
    2019 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2019, : 1395 - 1399
  • [43] Detection of anomaly in surveillance videos using quantum convolutional neural networks
    Amin, Javaria
    Anjum, Muhammad Almas
    Ibrar, Kainat
    Sharif, Muhammad
    Kadry, Seifedine
    Crespo, Ruben Gonzalez
    IMAGE AND VISION COMPUTING, 2023, 135
  • [44] Influence-Aware Attention Networks for Anomaly Detection in Surveillance Videos
    Zhang, Sijia
    Gong, Maoguo
    Xie, Yu
    Qin, A. K.
    Li, Hao
    Gao, Yuan
    Ong, Yew-Soon
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (08) : 5427 - 5437
  • [45] A Comprehensive Survey of Machine Learning Methods for Surveillance Videos Anomaly Detection
    Choudhry, Nomica
    Abawajy, Jemal
    Huda, Shamsul
    Rao, Imran
    IEEE ACCESS, 2023, 11 : 114680 - 114713
  • [46] Improved Anomaly Detection in Surveillance Videos with Multiple Probabilistic Models Inference
    Xu, Zhen
    Zeng, Xiaoqian
    Ji, Genlin
    Sheng, Bo
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2022, 31 (03): : 1703 - 1717
  • [47] Application of Deep Learning for Crowd Anomaly Detection from Surveillance Videos
    Pawar, Karishma
    Attar, Vahida
    2021 11TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING, DATA SCIENCE & ENGINEERING (CONFLUENCE 2021), 2021, : 506 - 511
  • [48] Anomaly Detection in Surveillance Videos Using Regression With Recurrent Neural Networks
    Yagan, Mehmet
    Yilmaz, E. Alaattin
    Ozkan, Huseyin
    2022 30TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU, 2022,
  • [49] An Efficient Anomaly Recognition Framework Using an Attention Residual LSTM in Surveillance Videos
    Ullah, Waseem
    Ullah, Amin
    Hussain, Tanveer
    Khan, Zulfiqar Ahmad
    Baik, Sung Wook
    SENSORS, 2021, 21 (08)
  • [50] GssMILP for anomaly classification in surveillance videos
    Krishna, N. Satya
    Bhattu, S. Nagesh
    Somayajulu, D. V. L. N.
    Kumar, N. V. Narendra
    Reddy, K. Jaya Shankar
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 203