IBaggedFCNet: An Ensemble Framework for Anomaly Detection in Surveillance Videos

被引:7
|
作者
Zahid, Yumna [1 ]
Tahir, Muhammad Atif [1 ]
Durrani, Nouman M. [1 ]
Bouridane, Ahmed [2 ]
机构
[1] Natl Univ Comp & Emerging Sci, Dept Comp Sci, Karachi Campus, Karachi 75030, Pakistan
[2] Northumbria Univ, Dept Comp & Informat Sci, Newcastle Upon Tyne NEI 8ST, Tyne & Wear, England
来源
IEEE ACCESS | 2020年 / 8卷
关键词
Videos; Feature extraction; Anomaly detection; Bagging; Surveillance; Training; Data models; feature learning; bagging ensemble;
D O I
10.1109/ACCESS.2020.3042222
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The prevalent use of surveillance cameras in public places and advancements in computer vision warrant most sought-after research in the domain of anomalous activity detection. Anomaly detection has shown promising applications for suspicious activity detection. In this paper, we propose a bagging framework IBaggedFCNet that leverages the power of ensembles for robust classification to detect anomalies in videos. Our approach, which investigates state-of-the-art Inception-v3 image classification network, requires no video segmentation prior to feature extraction that can produce unstable segmentation results and cause a high memory footprint. We show improvement empirically on multiple benchmark datasets, most prominently on the UCF-Crime dataset. Moreover, we experiment with different ensemble fusion methods, including static and dynamic techniques, and also prove our single model's predictive accuracy in localizing anomaly in surveillance videos.
引用
收藏
页码:220620 / 220630
页数:11
相关论文
共 50 条
  • [31] Anomaly Event Detection based on People Trajectories for Surveillance Videos
    Mora Colque, Rensso
    Cayllahua, Edward
    de Melo, Victor C.
    Chavez, Guillermo Camara
    Schwartz, William Robson
    PROCEEDINGS OF THE 15TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS, VOL 5: VISAPP, 2020, : 107 - 116
  • [32] Exploring Background-bias for Anomaly Detection in Surveillance Videos
    Liu, Kun
    Ma, Huadong
    PROCEEDINGS OF THE 27TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA (MM'19), 2019, : 1490 - 1499
  • [33] Deep anomaly detection through visual attention in surveillance videos
    Nasaruddin Nasaruddin
    Kahlil Muchtar
    Afdhal Afdhal
    Alvin Prayuda Juniarta Dwiyantoro
    Journal of Big Data, 7
  • [34] Hypotheses Generation and Verification Based Framework for Crowd Anomaly Detection in Single-Scene Surveillance Videos
    Hanif, Muhammad Shehzad
    Bilal, Muhammad
    Balamash, Abdullah Saeed
    Al-Saggaf, Ubaid M.
    TRAITEMENT DU SIGNAL, 2023, 40 (01) : 115 - 122
  • [35] QuARCS: Quantum Anomaly Recognition and Caption Scoring Framework for Surveillance Videos
    Mukherjee, Aniruddha
    Hassija, Vikas
    Chamola, Vinay
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2024, 70 (03) : 5618 - 5627
  • [36] Ship detection from coastal surveillance videos via an ensemble Canny-Gaussian-morphology framework
    Chen, Xinqiang
    Ling, Jun
    Wang, Shengzheng
    Yang, Yongsheng
    Luo, Lijuan
    Yan, Ying
    JOURNAL OF NAVIGATION, 2021, 74 (06): : 1252 - 1266
  • [37] ENAD: An Ensemble Framework for Unsupervised Network Anomaly Detection
    Liao, Jingyi
    Teo, Sin G.
    Kundu, Partha Pratim
    Tram Truong-Huu
    PROCEEDINGS OF THE 2021 IEEE INTERNATIONAL CONFERENCE ON CYBER SECURITY AND RESILIENCE (IEEE CSR), 2021, : 81 - 88
  • [38] Anomaly Detection in Surveillance Videos by Future Appearance-motion Prediction
    Tuan-Hung Vu
    Ambellouis, Sebastien
    Boonaert, Jacques
    Taleb-Ahmed, Abdelmalik
    PROCEEDINGS OF THE 15TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS, VOL 5: VISAPP, 2020, : 484 - 490
  • [39] MULTI-SCALE BACKGROUND SUPPRESSION ANOMALY DETECTION IN SURVEILLANCE VIDEOS
    Zhen, Yang
    Guo, Yuanfang
    Wei, Jinjie
    Bao, Xiuguo
    Huang, Di
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 1114 - 1118
  • [40] A data stream-based approach for anomaly detection in surveillance videos
    Aydogdu, Ozge
    Ekinci, Murat
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (21) : 60213 - 60241