Genetic Algorithm-based Test Parameter Optimization for ADAS System Testing

被引:36
|
作者
Kluck, Florian [1 ]
Zimmermann, Martin [1 ]
Wotawa, Franz [1 ]
Nica, Mihai [2 ]
机构
[1] Graz Univ Technol, Inst Software Technol, Christian Doppler Lab Qual Assurance, Methodol Autonomous Cyber Phys Syst, Graz, Austria
[2] AVL List GmbH, Graz, Austria
关键词
Autonomous vehicles; Genetic algorithms; System verification; Automatic testing;
D O I
10.1109/QRS.2019.00058
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, we outline the use of a genetic algorithm for test parameter optimization in the context of autonomous and automated driving. Our approach iteratively optimizes test parameters to aim at obtaining critical scenarios that form the basis for virtual verification and validation of Advanced Driver Assistant Systems (ADAS). We consider a test scenario to be critical if the underlying parameter set causes a malfunction of the system equipped with the ADAS function (i.e., near crash or crash of the vehicle). For evaluating the effectiveness of our approach, we set up an automated simulation framework, where we simulated the Euro NCAP car-to-car rear scenario. To assess the criticality of each test scenario we rely on time-to-collision (TTC), which is a well-known and often used time-based safety indicator for recognizing rear-end conflicts. Our genetic algorithm approach showed a higher chance to generate a critical scenario, compared to a random selection of test parameters.
引用
收藏
页码:418 / 425
页数:8
相关论文
共 50 条
  • [41] Modified grasshopper optimization algorithm-based genetic algorithm for global optimization problems: the system of nonlinear equations case study
    Omar, Hala A.
    El-Shorbagy, M. A.
    SOFT COMPUTING, 2022, 26 (18) : 9229 - 9245
  • [42] Parameter optimization of compressor based on genetic algorithm
    Zhong, Meipeng
    Zheng, Shuiying
    Pan, Xiaohong
    Nongye Jixie Xuebao/Transactions of the Chinese Society of Agricultural Machinery, 2009, 40 (08): : 198 - 202
  • [43] Genetic algorithm-based parameter selection approach to single image defogging
    Guo, Fan
    Peng, Hui
    Tang, Jin
    INFORMATION PROCESSING LETTERS, 2016, 116 (10) : 595 - 602
  • [44] Genetic algorithm-based parameter-extraction for power GaAs MESFET
    Gao, YF
    TELSIKS 2001, VOL 1 & 2, PROCEEDINGS, 2001, : 317 - 318
  • [45] Genetic algorithm-based parameter identification of a hysteretic brushless exciter model
    Aliprantis, DC
    Sudhoff, SD
    Kuhn, BT
    IEEE TRANSACTIONS ON ENERGY CONVERSION, 2006, 21 (01) : 148 - 154
  • [46] Genetic algorithm-based price and warranty optimization in software systems
    Arora, Rajat
    Tandon, Abhishek
    Aggarwal, Anu G.
    Mittal, Rubina
    EXPERT SYSTEMS, 2024, 41 (07)
  • [47] Genetic algorithm-based redundancy optimization problems in fuzzy framework
    Hou, Fujun
    Wu, Qizong
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2006, 35 (10) : 1931 - 1941
  • [48] GENETIC ALGORITHM-BASED CHAOS CLUSTERING APPROACH FOR NONLINEAR OPTIMIZATION
    Cheng, Min-Yuan
    Huang, Kuo-Yu
    JOURNAL OF MARINE SCIENCE AND TECHNOLOGY-TAIWAN, 2010, 18 (03): : 435 - 441
  • [49] An improved chaos optimization algorithm-based parameter identification of synchronous generator
    Zhu, Qing
    Yuan, Xiaofang
    Wang, Hui
    ELECTRICAL ENGINEERING, 2012, 94 (03) : 147 - 153
  • [50] An improved chaos optimization algorithm-based parameter identification of synchronous generator
    Qing Zhu
    Xiaofang Yuan
    Hui Wang
    Electrical Engineering, 2012, 94 : 147 - 153