Genetic algorithm-based parameter identification of a hysteretic brushless exciter model

被引:45
|
作者
Aliprantis, DC
Sudhoff, SD
Kuhn, BT
机构
[1] Purdue Univ, Dept Elect & Comp Engn, W Lafayette, IN 47907 USA
[2] Smart Spark Energy Syst Inc, Champaign, IL 61820 USA
关键词
brushless rotating machines; genetic algorithms (GAs); magnetic hysteresis; measurement; parameter estimation; synchronous generator excitation;
D O I
10.1109/TEC.2005.847967
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this paper, a parameter identification procedure for a recently proposed hysteretic brushless exciter model is discussed. The model features average-value representation of all rectification modes, and incorporation of magnetic hysteresis in the d-axis main flux path using Preisach's theory. Herein, a method for obtaining the model's parameters from the waveforms of exciter field current and main alternator terminal voltage is set forth. In particular, a genetic algorithm is employed to solve the optimization problem of minimizing the model's prediction error during a change in reference voltage level.
引用
收藏
页码:148 / 154
页数:7
相关论文
共 50 条
  • [1] A Hybrid Genetic Algorithm-Based Parameter Identification Method for Nonlinear Hysteretic System with Experimental Verification
    Lu, Zheng
    Zhao, Shengqiang
    Fan, Qiaoqiao
    Zhu, Xudong
    [J]. INTERNATIONAL JOURNAL OF STRUCTURAL STABILITY AND DYNAMICS, 2024, 24 (08)
  • [2] Dandelion Optimizer algorithm-based method for accurate photovoltaic model parameter identification
    Elhammoudy, Abdelfattah
    Elyaqouti, Mustapha
    Arjdal, El Hanafi
    Ben Hmamou, Dris
    Lidaighbi, Souad
    Saadaoui, Driss
    Choulli, Imade
    Abazine, Ismail
    [J]. ENERGY CONVERSION AND MANAGEMENT-X, 2023, 19
  • [3] Genetic algorithm-based multi-objective optimization of an exciter for magnetic induction tomography
    Ziolkowski, Marcin
    Gratkowski, Stanislaw
    [J]. COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 2009, 28 (05) : 1121 - 1128
  • [4] Genetic algorithm-based parameter inversion and pipeline subsidence prediction
    Xue, Lian
    Zhao, Xue
    Li, Hu
    Zheng, Jie
    Lei, Xiuqiang
    Gong, Xue
    [J]. JOURNAL OF APPLIED GEOPHYSICS, 2023, 215
  • [5] Genetic Algorithm-based Affine Parameter Estimation for Shape Recognition
    Mao, Yuxing
    Wang, Yan
    Wang, Quanlin
    He, Wei
    [J]. INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS, 2014, 11
  • [6] Spatiotemporal parameter adaptation in genetic algorithm-based video segmentation
    Kang, SK
    Kim, EY
    Kim, HJ
    [J]. PRICAI 2004: TRENDS IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2004, 3157 : 401 - 410
  • [7] Teaching Genetic Algorithm-based Parameter Optimization Using Pacman
    Silla, Carlos N., Jr.
    [J]. 2016 IEEE FRONTIERS IN EDUCATION CONFERENCE (FIE), 2016,
  • [8] Evolutionary Algorithm-based Parameter Identification for Nonlinear Dynamical Systems
    Banerjee, Amit
    Abu-Mahfouz, Issam
    [J]. 2011 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2011, : 1 - 5
  • [9] RECENT ADVANCES IN GENETIC ALGORITHM-BASED STRUCTURAL IDENTIFICATION
    Koh, C. G.
    Zhang, Z.
    [J]. PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON INSPECTION APPRAISAL REPAIRS AND MAINTENANCE OF STRUCTURES, VOLS 1 AND 2, 2010, : 45 - 55
  • [10] Parameter identification of transformer lumped element network model through genetic algorithm-based gray-box modelling technique
    Cheng, Bozhi
    Yang, Yaoxian
    Shen, Shuhang
    Wang, Zhongdong
    Crossley, Peter
    Wilson, Gordon
    Fieldsend-Roxborough, Andrew
    [J]. IET ELECTRIC POWER APPLICATIONS, 2024, 18 (03) : 265 - 277