Genetic Algorithm-based Test Parameter Optimization for ADAS System Testing

被引:36
|
作者
Kluck, Florian [1 ]
Zimmermann, Martin [1 ]
Wotawa, Franz [1 ]
Nica, Mihai [2 ]
机构
[1] Graz Univ Technol, Inst Software Technol, Christian Doppler Lab Qual Assurance, Methodol Autonomous Cyber Phys Syst, Graz, Austria
[2] AVL List GmbH, Graz, Austria
关键词
Autonomous vehicles; Genetic algorithms; System verification; Automatic testing;
D O I
10.1109/QRS.2019.00058
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, we outline the use of a genetic algorithm for test parameter optimization in the context of autonomous and automated driving. Our approach iteratively optimizes test parameters to aim at obtaining critical scenarios that form the basis for virtual verification and validation of Advanced Driver Assistant Systems (ADAS). We consider a test scenario to be critical if the underlying parameter set causes a malfunction of the system equipped with the ADAS function (i.e., near crash or crash of the vehicle). For evaluating the effectiveness of our approach, we set up an automated simulation framework, where we simulated the Euro NCAP car-to-car rear scenario. To assess the criticality of each test scenario we rely on time-to-collision (TTC), which is a well-known and often used time-based safety indicator for recognizing rear-end conflicts. Our genetic algorithm approach showed a higher chance to generate a critical scenario, compared to a random selection of test parameters.
引用
收藏
页码:418 / 425
页数:8
相关论文
共 50 条
  • [31] A Genetic Algorithm-Based Metaheuristic Approach for Test Cost Optimization of 3D SIC
    Kaibartta, Tanusree
    Biswas, G. P.
    Pal, Arup Kumar
    Das, Debesh Kumar
    IEEE ACCESS, 2021, 9 : 160987 - 161002
  • [32] A Hybrid Genetic Algorithm-Based Parameter Identification Method for Nonlinear Hysteretic System with Experimental Verification
    Lu, Zheng
    Zhao, Shengqiang
    Fan, Qiaoqiao
    Zhu, Xudong
    INTERNATIONAL JOURNAL OF STRUCTURAL STABILITY AND DYNAMICS, 2024, 24 (08)
  • [33] Employee attrition prediction for imbalanced data using genetic algorithm-based parameter optimization of XGB Classifier
    Konar, Karabi
    Das, Saptarshi
    Das, Samiran
    2023 INTERNATIONAL CONFERENCE ON COMPUTER, ELECTRICAL & COMMUNICATION ENGINEERING, ICCECE, 2023,
  • [34] Genetic Algorithm-Based Multi-Objective Optimization for Statistical Yield Analysis Under Parameter Variations
    Li, Xin
    Sun, Jin
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2017, 26 (01)
  • [35] Genetic algorithm-based parameter optimization for EO-1 Hyperion remote sensing image classification
    Lin, Zhilei
    Zhang, Guicheng
    EUROPEAN JOURNAL OF REMOTE SENSING, 2020, 53 (01) : 124 - 131
  • [36] Enhanced whale optimization algorithm-based modeling and simulation analysis for industrial system parameter identification
    Braik, Malik
    Awadallah, Mohammed
    Al-Betar, Mohammed Azmi
    Al-Hiary, Heba
    JOURNAL OF SUPERCOMPUTING, 2023, 79 (13): : 14489 - 14544
  • [37] Genetic Algorithm-based parameters optimization for the PID Controller applied in Heave Compensation System
    Sun, Yougang
    Qiang, Haiyan
    Sheng, Xiaoming
    MECHATRONICS ENGINEERING, COMPUTING AND INFORMATION TECHNOLOGY, 2014, 556-562 : 2462 - 2465
  • [38] Enhanced whale optimization algorithm-based modeling and simulation analysis for industrial system parameter identification
    Malik Braik
    Mohammed Awadallah
    Mohammed Azmi Al-Betar
    Heba Al-Hiary
    The Journal of Supercomputing, 2023, 79 : 14489 - 14544
  • [39] Modelling cost into a genetic algorithm-based portfolio optimization system by seeding and objective sharing
    Aranha, C.
    Iba, H.
    2007 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-10, PROCEEDINGS, 2007, : 196 - 203
  • [40] Modified grasshopper optimization algorithm-based genetic algorithm for global optimization problems: the system of nonlinear equations case study
    Hala A. Omar
    M. A. El-Shorbagy
    Soft Computing, 2022, 26 : 9229 - 9245