Genetic Algorithm-based Test Parameter Optimization for ADAS System Testing

被引:36
|
作者
Kluck, Florian [1 ]
Zimmermann, Martin [1 ]
Wotawa, Franz [1 ]
Nica, Mihai [2 ]
机构
[1] Graz Univ Technol, Inst Software Technol, Christian Doppler Lab Qual Assurance, Methodol Autonomous Cyber Phys Syst, Graz, Austria
[2] AVL List GmbH, Graz, Austria
关键词
Autonomous vehicles; Genetic algorithms; System verification; Automatic testing;
D O I
10.1109/QRS.2019.00058
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, we outline the use of a genetic algorithm for test parameter optimization in the context of autonomous and automated driving. Our approach iteratively optimizes test parameters to aim at obtaining critical scenarios that form the basis for virtual verification and validation of Advanced Driver Assistant Systems (ADAS). We consider a test scenario to be critical if the underlying parameter set causes a malfunction of the system equipped with the ADAS function (i.e., near crash or crash of the vehicle). For evaluating the effectiveness of our approach, we set up an automated simulation framework, where we simulated the Euro NCAP car-to-car rear scenario. To assess the criticality of each test scenario we rely on time-to-collision (TTC), which is a well-known and often used time-based safety indicator for recognizing rear-end conflicts. Our genetic algorithm approach showed a higher chance to generate a critical scenario, compared to a random selection of test parameters.
引用
收藏
页码:418 / 425
页数:8
相关论文
共 50 条
  • [21] Genetic algorithm-based fuzzy expert system
    Basal, GP
    Verma, B
    Tiwari, AK
    Chande, PK
    IETE TECHNICAL REVIEW, 2002, 19 (03): : 111 - 118
  • [22] Genetic algorithm-based strategy for the steam reformer optimization
    Pajak, Marcin
    Brus, Grzegorz
    Szmyd, Janusz S.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (31) : 11652 - 11665
  • [23] Genetic algorithm-based optimization used in rolling schedule
    Yang Jing-ming
    Che Hai-jun
    Dou Fu-ping
    Zhou Tao
    JOURNAL OF IRON AND STEEL RESEARCH INTERNATIONAL, 2008, 15 (02) : 18 - 22
  • [24] Genetic Algorithm-Based Optimization Used in Rolling Schedule
    YANG Jing-ming
    JournalofIronandSteelResearch(International), 2008, (02) : 18 - 22
  • [25] Research on genetic algorithm-based rapid design optimization
    Tong Yifei
    He Yong
    Gong Zhibing
    Li Dongbo
    Zhu Baiqing
    MECHANIKA, 2012, (05): : 569 - 573
  • [26] Genetic Algorithm-Based Optimization Used in Rolling Schedule
    Jing-ming Yang
    Hai-jun Che
    Fu-ping Dou
    Tao Zhou
    Journal of Iron and Steel Research International, 2008, 15 : 18 - 22
  • [27] Genetic algorithm-based optimization of routing and scheduling for logistics
    Hu, XD
    Wei, QF
    CONCURRENT ENGINEERING: THE WORLDWIDE ENGINEERING GRID, PROCEEDINGS, 2004, : 959 - 962
  • [28] A genetic algorithm-based rule extraction system
    Sarkar, Bikash Kanti
    Sana, Shib Sankar
    Chaudhuri, Kripasindhu
    APPLIED SOFT COMPUTING, 2012, 12 (01) : 238 - 254
  • [29] Parameter optimization of hybrid fuel cell system based on genetic algorithm
    Lai Lianfeng
    Chang Ting-Cheng
    PROCEEDINGS OF 2019 IEEE EURASIA CONFERENCE ON BIOMEDICAL ENGINEERING, HEALTHCARE AND SUSTAINABILITY (IEEE ECBIOS 2019), 2019, : 102 - 104
  • [30] A Genetic Algorithm-based Robust Control Approach for Wind Turbine System Test Benches
    Basler, Maximilian
    Thuc Anh Nguyen
    Hruschka, Felix
    Jassmann, Uwe
    Abel, Dirk
    2020 EUROPEAN CONTROL CONFERENCE (ECC 2020), 2020, : 394 - 401