Certifiably optimal sparse principal component analysis

被引:23
|
作者
Berk, Lauren [1 ]
Bertsimasi, Dimitris [1 ]
机构
[1] MIT, Operat Res Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA
关键词
Sparse principal component analysis; Principal component analysis; Mixed integer optimization; Sparse eigenvalues; POWER METHOD; OPTIMIZATION; RELAXATIONS; REGRESSION; SELECTION; ROTATION;
D O I
10.1007/s12532-018-0153-6
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper addresses the sparse principal component analysis (SPCA) problem for covariance matrices in dimension n aiming to find solutions with sparsity k using mixed integer optimization. We propose a tailored branch-and-bound algorithm, Optimal-SPCA, that enables us to solve SPCA to certifiable optimality in seconds for n=100or higher to find high-quality feasible solutions in seconds while taking several hours to prove optimality. We apply our methods to a number of real data sets to demonstrate that our approach scales to the same problem sizes attempted by other methods, while providing superior solutions compared to those methods, explaining a higher portion of variance and permitting complete control over the desired sparsity. The software that was reviewed as part of this submission has been given the DOI (digital object identifier) 10.5281/zenodo.2027898.
引用
收藏
页码:381 / 420
页数:40
相关论文
共 50 条
  • [21] Supervised Sparse and Functional Principal Component Analysis
    Li, Gen
    Shen, Haipeng
    Huang, Jianhua Z.
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2016, 25 (03) : 859 - 878
  • [22] Principal Component Analysis With Sparse Fused Loadings
    Guo, Jian
    James, Gareth
    Levina, Elizaveta
    Michailidis, George
    Zhu, Ji
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2010, 19 (04) : 930 - 946
  • [23] Multilevel sparse functional principal component analysis
    Di, Chongzhi
    Crainiceanu, Ciprian M.
    Jank, Wolfgang S.
    [J]. STAT, 2014, 3 (01): : 126 - 143
  • [24] Sparse exponential family Principal Component Analysis
    Lu, Meng
    Huang, Jianhua Z.
    Qian, Xiaoning
    [J]. PATTERN RECOGNITION, 2016, 60 : 681 - 691
  • [25] Exactly Uncorrelated Sparse Principal Component Analysis
    Kwon, Oh-Ran
    Lu, Zhaosong
    Zou, Hui
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2024, 33 (01) : 231 - 241
  • [26] Stochastic convex sparse principal component analysis
    Baytas, Inci M.
    Lin, Kaixiang
    Wang, Fei
    Jain, Anil K.
    Zhou, Jiayu
    [J]. EURASIP JOURNAL ON BIOINFORMATICS AND SYSTEMS BIOLOGY, 2016, (01)
  • [27] Sparse principal component analysis with measurement errors
    Shi, Jianhong
    Song, Weixing
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2016, 175 : 87 - 99
  • [28] Sparse principal component analysis by choice of norm
    Qi, Xin
    Luo, Ruiyan
    Zhao, Hongyu
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2013, 114 : 127 - 160
  • [29] Approximation bounds for sparse principal component analysis
    d'Aspremont, Alexandre
    Bach, Francis
    El Ghaoui, Laurent
    [J]. MATHEMATICAL PROGRAMMING, 2014, 148 (1-2) : 89 - 110
  • [30] A New Basis for Sparse Principal Component Analysis
    Chen, Fan
    Rohe, Karl
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2024, 33 (02) : 421 - 434