Approximation bounds for sparse principal component analysis

被引:11
|
作者
d'Aspremont, Alexandre [1 ,2 ]
Bach, Francis [3 ,4 ]
El Ghaoui, Laurent [5 ]
机构
[1] Ecole Normale Super, CNRS, Paris, France
[2] DI, UMR 8548, Paris, France
[3] Ecole Normale Super, INRIA, SIERRA Project Team, F-75231 Paris, France
[4] DI, Paris, France
[5] Univ Calif Berkeley, EECS, Berkeley, CA 94720 USA
基金
欧洲研究理事会;
关键词
62H25; 90C22; 90C27;
D O I
10.1007/s10107-014-0751-7
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We produce approximation bounds on a semidefinite programming relaxation for sparse principal component analysis. The sparse maximum eigenvalue problem cannot be efficiently approximated up to a constant approximation ratio, so our bounds depend on the optimum value of the semidefinite relaxation: the higher this value, the better the approximation. In particular, these bounds allow us to control approximation ratios for tractable statistics in hypothesis testing problems where data points are sampled from Gaussian models with a single sparse leading component.
引用
收藏
页码:89 / 110
页数:22
相关论文
共 50 条
  • [1] Approximation bounds for sparse principal component analysis
    Alexandre d’Aspremont
    Francis Bach
    Laurent El Ghaoui
    [J]. Mathematical Programming, 2014, 148 : 89 - 110
  • [2] Exact and Approximation Algorithms for Sparse Principal Component Analysis
    Li, Yongchun
    Xie, Weijun
    [J]. INFORMS JOURNAL ON COMPUTING, 2024,
  • [3] Sparse principal component analysis
    Zou, Hui
    Hastie, Trevor
    Tibshirani, Robert
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2006, 15 (02) : 265 - 286
  • [4] Sparse principal component analysis via regularized low rank matrix approximation
    Shen, Haipeng
    Huang, Jianhua Z.
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2008, 99 (06) : 1015 - 1034
  • [5] Robust sparse principal component analysis
    ZHAO Qian
    MENG DeYu
    XU ZongBen
    [J]. Science China(Information Sciences), 2014, 57 (09) : 175 - 188
  • [6] Multilinear Sparse Principal Component Analysis
    Lai, Zhihui
    Xu, Yong
    Chen, Qingcai
    Yang, Jian
    Zhang, David
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2014, 25 (10) : 1942 - 1950
  • [7] Robust Sparse Principal Component Analysis
    Croux, Christophe
    Filzmoser, Peter
    Fritz, Heinrich
    [J]. TECHNOMETRICS, 2013, 55 (02) : 202 - 214
  • [8] Robust sparse principal component analysis
    Zhao Qian
    Meng DeYu
    Xu ZongBen
    [J]. SCIENCE CHINA-INFORMATION SCIENCES, 2014, 57 (09) : 1 - 14
  • [9] Streaming Sparse Principal Component Analysis
    Yang, Wenzhuo
    Xu, Huan
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 37, 2015, 37 : 494 - 503
  • [10] Sparse Generalised Principal Component Analysis
    Smallman, Luke
    Artemiou, Andreas
    Morgan, Jennifer
    [J]. PATTERN RECOGNITION, 2018, 83 : 443 - 455