Multilevel sparse functional principal component analysis

被引:28
|
作者
Di, Chongzhi [1 ]
Crainiceanu, Ciprian M. [2 ]
Jank, Wolfgang S. [3 ]
机构
[1] Fred Hutchinson Canc Res Ctr, Div Publ Hlth Sci, 1100 Fairview Ave North,M2-B500, Seattle, WA 98115 USA
[2] Johns Hopkins Univ, Dept Biostat, Baltimore, MD 21205 USA
[3] Univ S Florida, Dept Informat Syst & Decis Sci, Tampa, FL 33620 USA
来源
STAT | 2014年 / 3卷 / 01期
关键词
functional principal component analysis; multilevel models; smoothing;
D O I
10.1002/sta4.50
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider analysis of sparsely sampled multilevel functional data, where the basic observational unit is a function and data have a natural hierarchy of basic units. An example is when functions are recorded at multiple visits for each subject. Multilevel functional principal component analysis was proposed recently for such data when functions are densely recorded. Here, we consider the case when functions are sparsely sampled and may contain only a few observations per function. We exploit the multilevel structure of covariance operators and achieve data reduction by principal component decompositions at both between-subject and within-subject levels. We address inherent methodological differences in the sparse sampling context to: (i) estimate the covariance operators; (ii) estimate the functional principal component scores; and (iii) predict the underlying curves. Through simulations, the proposed method is able to discover dominating modes of variations and reconstruct underlying curves well even in sparse settings. Our approach is illustrated by two applications, the Sleep Heart Health Study and eBay auctions. Copyright (C) 2014 John Wiley & Sons, Ltd.
引用
收藏
页码:126 / 143
页数:18
相关论文
共 50 条
  • [1] MULTILEVEL FUNCTIONAL PRINCIPAL COMPONENT ANALYSIS
    Di, Chong-Zhi
    Crainiceanu, Ciprian M.
    Caffo, Brian S.
    Punjabi, Naresh M.
    [J]. ANNALS OF APPLIED STATISTICS, 2009, 3 (01): : 458 - 488
  • [2] Fast Multilevel Functional Principal Component Analysis
    Cui, Erjia
    Li, Ruonan
    Crainiceanu, Ciprian M.
    Xiao, Luo
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2023, 32 (02) : 366 - 377
  • [3] Supervised Sparse and Functional Principal Component Analysis
    Li, Gen
    Shen, Haipeng
    Huang, Jianhua Z.
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2016, 25 (03) : 859 - 878
  • [4] Sparse multivariate functional principal component analysis
    Song, Jun
    Kim, Kyongwon
    [J]. STAT, 2022, 11 (01):
  • [5] SPARSE FUNCTIONAL PRINCIPAL COMPONENT ANALYSIS IN HIGH DIMENSIONS
    Hu, Xiaoyu
    Yao, Fang
    [J]. STATISTICA SINICA, 2022, 32 : 1939 - 1960
  • [6] Interpretable principal component analysis for multilevel multivariate functional data
    ZHANG, J. U. N.
    SIEGLE, G. R. E. G. J.
    SUN, T. A. O.
    D'ANDREA, W. E. N. D. Y.
    KRAFTY, R. O. B. E. R. T. T.
    [J]. BIOSTATISTICS, 2023, 24 (02) : 227 - 243
  • [7] Sparse logistic functional principal component analysis for binary data
    Rou Zhong
    Shishi Liu
    Haocheng Li
    Jingxiao Zhang
    [J]. Statistics and Computing, 2023, 33
  • [8] Sparse logistic functional principal component analysis for binary data
    Zhong, Rou
    Liu, Shishi
    Li, Haocheng
    Zhang, Jingxiao
    [J]. STATISTICS AND COMPUTING, 2023, 33 (01)
  • [9] Sparse functional principal component analysis in a new regression framework
    Nie, Yunlong
    Cao, Jiguo
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2020, 152
  • [10] Sparse principal component analysis
    Zou, Hui
    Hastie, Trevor
    Tibshirani, Robert
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2006, 15 (02) : 265 - 286