Sparse logistic functional principal component analysis for binary data

被引:3
|
作者
Zhong, Rou [1 ]
Liu, Shishi [2 ]
Li, Haocheng [3 ]
Zhang, Jingxiao [1 ]
机构
[1] Renmin Univ China, Ctr Appl Stat, Sch Stat, Beijing, Peoples R China
[2] Hangzhou Dianzi Univ, Sch Econ, Hangzhou, Peoples R China
[3] Univ Calgary, Dept Math & Stat, Calgary, AB, Canada
关键词
Functional principal component analysis; Penalized Bernoulli likelihood; Binary data; Local sparsity; MM algorithm; NONCONCAVE PENALIZED LIKELIHOOD; VARIABLE SELECTION; PHYSICAL-ACTIVITY; MODEL;
D O I
10.1007/s11222-022-10190-3
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Functional binary datasets occur frequently in real practice, whereas discrete characteristics of the data can bring challenges to model estimation. In this paper, we propose a sparse logistic functional principal component analysis (SLFPCA) method to handle functional binary data. The SLFPCA looks for local sparsity of the eigenfunctions to obtain convenience in interpretation. We formulate the problem through a penalized Bernoulli likelihood with both roughness penalty and sparseness penalty terms. An innovative algorithm is developed for the optimization of the penalized likelihood using majorization-minimization algorithm. The proposed method is accompanied by R package SLFPCA for implementation. The theoretical results indicate both consistency and sparsistency of the proposed method. We conduct a thorough numerical experiment to demonstrate the advantages of the SLFPCA approach. Our method is further applied to a physical activity dataset.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Sparse logistic functional principal component analysis for binary data
    Rou Zhong
    Shishi Liu
    Haocheng Li
    Jingxiao Zhang
    Statistics and Computing, 2023, 33
  • [2] SPARSE LOGISTIC PRINCIPAL COMPONENTS ANALYSIS FOR BINARY DATA
    Lee, Seokho
    Huang, Jianhua Z.
    Hu, Jianhua
    ANNALS OF APPLIED STATISTICS, 2010, 4 (03): : 1579 - 1601
  • [3] Principal component models for sparse functional data
    James, GM
    Hastie, TJ
    Sugar, CA
    BIOMETRIKA, 2000, 87 (03) : 587 - 602
  • [4] Supervised Sparse and Functional Principal Component Analysis
    Li, Gen
    Shen, Haipeng
    Huang, Jianhua Z.
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2016, 25 (03) : 859 - 878
  • [5] Multilevel sparse functional principal component analysis
    Di, Chongzhi
    Crainiceanu, Ciprian M.
    Jank, Wolfgang S.
    STAT, 2014, 3 (01): : 126 - 143
  • [6] Sparse multivariate functional principal component analysis
    Song, Jun
    Kim, Kyongwon
    STAT, 2022, 11 (01):
  • [7] Hierarchical sparse functional principal component analysis for multistage multivariate profile data
    Wang, Kai
    Tsung, Fugee
    IISE TRANSACTIONS, 2021, 53 (01) : 58 - 73
  • [8] Modeling environmental data by functional principal component logistic regression
    Escabias, M
    Aguilera, AM
    Valderrama, MJ
    ENVIRONMETRICS, 2005, 16 (01) : 95 - 107
  • [9] SPARSE FUNCTIONAL PRINCIPAL COMPONENT ANALYSIS IN HIGH DIMENSIONS
    Hu, Xiaoyu
    Yao, Fang
    STATISTICA SINICA, 2022, 32 : 1939 - 1960
  • [10] Principal component analysis of binary genomics data
    Song, Yipeng
    Westerhuis, Johan A.
    Aben, Nanne
    Michaut, Magali
    Wessels, Lodewyk F. A.
    Smilde, Age K.
    BRIEFINGS IN BIOINFORMATICS, 2019, 20 (01) : 317 - 329