Sparse principal component analysis with measurement errors

被引:5
|
作者
Shi, Jianhong [1 ]
Song, Weixing [2 ]
机构
[1] Shanxi Normal Univ, Sch Math & Comp Sci, Linfen 041000, Shanxi, Peoples R China
[2] Kansas State Univ, Dept Stat, Manhattan, KS 66503 USA
关键词
Lasso; Elastic net; Sparse principal component analysis; Measurement error; Bias correction; REGRESSION; SELECTION; LASSO;
D O I
10.1016/j.jspi.2016.03.001
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Traditional principal component analysis often produces non-zero loadings, which makes it hard to interpret the principal components. This drawback can be overcome by the sparse principal component analysis procedures developed in the past decade. However, similar work has not been done when the random variables or vectors are contaminated with measurement errors. Simply applying the existing sparse principal component analysis procedure to the error-contaminated data might lead to biased loadings. This paper tries to modify an existing sparse principal component procedure to accommodate the measurement error setup. Similar to error-free cases, we show that the sparse principal component for the latent variables can be formulated as a bias-corrected lasso (elastic net) regression problem based on the observed surrogates, efficient algorithms are also developed to implement the procedure. Numerical simulation studies are conducted to illustrate the finite sample performance of the proposed method. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:87 / 99
页数:13
相关论文
共 50 条
  • [1] Sparse principal component analysis
    Zou, Hui
    Hastie, Trevor
    Tibshirani, Robert
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2006, 15 (02) : 265 - 286
  • [2] Robust sparse principal component analysis
    ZHAO Qian
    MENG DeYu
    XU ZongBen
    [J]. Science China(Information Sciences), 2014, 57 (09) : 175 - 188
  • [3] Multilinear Sparse Principal Component Analysis
    Lai, Zhihui
    Xu, Yong
    Chen, Qingcai
    Yang, Jian
    Zhang, David
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2014, 25 (10) : 1942 - 1950
  • [4] Robust sparse principal component analysis
    Zhao Qian
    Meng DeYu
    Xu ZongBen
    [J]. SCIENCE CHINA-INFORMATION SCIENCES, 2014, 57 (09) : 1 - 14
  • [5] Robust Sparse Principal Component Analysis
    Croux, Christophe
    Filzmoser, Peter
    Fritz, Heinrich
    [J]. TECHNOMETRICS, 2013, 55 (02) : 202 - 214
  • [6] Streaming Sparse Principal Component Analysis
    Yang, Wenzhuo
    Xu, Huan
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 37, 2015, 37 : 494 - 503
  • [7] Sparse Generalised Principal Component Analysis
    Smallman, Luke
    Artemiou, Andreas
    Morgan, Jennifer
    [J]. PATTERN RECOGNITION, 2018, 83 : 443 - 455
  • [8] Sparse kernel principal component analysis
    Tipping, ME
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 13, 2001, 13 : 633 - 639
  • [9] Robust sparse principal component analysis
    Qian Zhao
    DeYu Meng
    ZongBen Xu
    [J]. Science China Information Sciences, 2014, 57 : 1 - 14
  • [10] Weighted sparse principal component analysis
    Van Deun, Katrijn
    Thorrez, Lieven
    Coccia, Margherita
    Hasdemir, Dicle
    Westerhuis, Johan A.
    Smilde, Age K.
    Van Mechelen, Iven
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2019, 195