Interacting Tracklets for Multi-Object Tracking

被引:51
|
作者
Lan, Long [1 ]
Wang, Xinchao [2 ]
Zhang, Shiliang [3 ]
Tao, Dacheng [4 ]
Gao, Wen [3 ]
Huang, Thomas S. [5 ]
机构
[1] Natl Univ Def Technol, State Key Lab High Performance Comp, Changsha 410073, Hunan, Peoples R China
[2] Stevens Inst Technol, Dept Comp Sci, Hoboken, NJ 07030 USA
[3] Peking Univ, Dept Comp Sci, Beijing 100871, Peoples R China
[4] Univ Sydney, Fac Engn & Informat Technol, UBTECH Sydney Artificial Intelligence Ctr, Sch Informat Technol, Darlington 2008, NSW, England
[5] Univ Illinois, Beckman Inst, Image Format & Proc Grp, Urbana, IL 61801 USA
基金
澳大利亚研究理事会;
关键词
Multi-object tracking; tracklets; interactions;
D O I
10.1109/TIP.2018.2843129
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose to exploit the interactions between non-associable tracklets to facilitate multi-object tracking. We introduce two types of tracklet interactions, close interaction and distant interaction. The close interaction imposes physical constraints between two temporally overlapping tracklets, and more importantly, allows us to learn local classifiers to distinguish targets that are close to each other in the spatiotemporal domain. The distant interaction, on the other hand, accounts for the higher order motion and appearance consistency between two temporally isolated tracklets. Our approach is modeled as a binary labeling problem and solved using the efficient quadratic pseudo-Boolean optimization. It yields promising tracking performance on the challenging PETSO9 and MOT16 dataset.
引用
收藏
页码:4585 / 4597
页数:13
相关论文
共 50 条
  • [11] Multi-object tracking using score-driven hierarchical association strategy between predicted tracklets and objects
    Zhao, Tianyi
    Yang, Guanci
    Li, Yang
    Lu, Minglang
    Sun, Haoran
    [J]. Image and Vision Computing, 2024, 152
  • [12] MULTI-OBJECT TRACKING AS ATTENTION MECHANISM
    Fukui, Hiroshi
    Miyagawa, Taiki
    Morishita, Yusuke
    [J]. 2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 505 - 509
  • [13] Multi-object tracking of human spermatozoa
    Sorensen, Lauge
    Ostergaard, Jakob
    Johansen, Peter
    de Bruijne, Marleen
    [J]. MEDICAL IMAGING 2008: IMAGE PROCESSING, PTS 1-3, 2008, 6914
  • [14] MOTS: Multi-Object Tracking and Segmentation
    Voigtlaender, Paul
    Krause, Michael
    Osep, Aljosa
    Luiten, Jonathon
    Sekar, Berin Balachandar Gnana
    Geiger, Andreas
    Leibe, Bastian
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 7934 - 7943
  • [15] TrackFormer: Multi-Object Tracking with Transformers
    Meinhardt, Tim
    Kirillov, Alexander
    Leal-Taixe, Laura
    Feichtenhofer, Christoph
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 8834 - 8844
  • [16] Engineering statistics for multi-object tracking
    Mahler, R
    [J]. 2001 IEEE WORKSHOP ON MULTI-OBJECT TRACKING, PROCEEDINGS, 2001, : 53 - 60
  • [17] MeMOT: Multi-Object Tracking with Memory
    Cai, Jiarui
    Xu, Mingze
    Li, Wei
    Xiong, Yuanjun
    Xia, Wei
    Tu, Zhuowen
    Soatto, Stefano
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 8080 - 8090
  • [18] Multi-object tracking for horse racing
    Ng, Wing W. Y.
    Liu, Xuyu
    Yan, Xuli
    Tian, Xing
    Zhong, Cankun
    Kwong, Sam
    [J]. INFORMATION SCIENCES, 2023, 638
  • [19] Relational Prior for Multi-Object Tracking
    Moskalev, Artem
    Sosnovik, Ivan
    Smeulders, Arnold
    [J]. 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2021), 2021, : 1081 - 1085
  • [20] Multi-Object Tracking with Distributed Sensing
    Dias, Ricardo
    Lau, Nuno
    Silva, Joao
    Lim, Gi Hyun
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON MULTISENSOR FUSION AND INTEGRATION FOR INTELLIGENT SYSTEMS (MFI), 2016, : 564 - 569