Interacting Tracklets for Multi-Object Tracking

被引:51
|
作者
Lan, Long [1 ]
Wang, Xinchao [2 ]
Zhang, Shiliang [3 ]
Tao, Dacheng [4 ]
Gao, Wen [3 ]
Huang, Thomas S. [5 ]
机构
[1] Natl Univ Def Technol, State Key Lab High Performance Comp, Changsha 410073, Hunan, Peoples R China
[2] Stevens Inst Technol, Dept Comp Sci, Hoboken, NJ 07030 USA
[3] Peking Univ, Dept Comp Sci, Beijing 100871, Peoples R China
[4] Univ Sydney, Fac Engn & Informat Technol, UBTECH Sydney Artificial Intelligence Ctr, Sch Informat Technol, Darlington 2008, NSW, England
[5] Univ Illinois, Beckman Inst, Image Format & Proc Grp, Urbana, IL 61801 USA
基金
澳大利亚研究理事会;
关键词
Multi-object tracking; tracklets; interactions;
D O I
10.1109/TIP.2018.2843129
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose to exploit the interactions between non-associable tracklets to facilitate multi-object tracking. We introduce two types of tracklet interactions, close interaction and distant interaction. The close interaction imposes physical constraints between two temporally overlapping tracklets, and more importantly, allows us to learn local classifiers to distinguish targets that are close to each other in the spatiotemporal domain. The distant interaction, on the other hand, accounts for the higher order motion and appearance consistency between two temporally isolated tracklets. Our approach is modeled as a binary labeling problem and solved using the efficient quadratic pseudo-Boolean optimization. It yields promising tracking performance on the challenging PETSO9 and MOT16 dataset.
引用
收藏
页码:4585 / 4597
页数:13
相关论文
共 50 条
  • [41] TrackFlow: Multi-Object Tracking with Normalizing Flows
    Mancusi, Gianluca
    Panariello, Aniello
    Porrello, Angelo
    Fabbri, Matteo
    Calderara, Simone
    Cucchiara, Rita
    [J]. 2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 9497 - 9509
  • [42] Multi-Object Tracking with Micro Aerial Vehicle
    Yufeng Ji
    Weixing Li
    Xiaolin Li
    Shikun Zhang
    Feng Pan
    [J]. Journal of Beijing Institute of Technology, 2019, 28 (03) : 389 - 398
  • [43] Connected Component Model for Multi-Object Tracking
    He, Zhenyu
    Li, Xin
    You, Xinge
    Tao, Dacheng
    Tang, Yuan Yan
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (08) : 3698 - 3711
  • [44] Multi-object tracking evaluated on sparse events
    Roth, Daniel
    Koller-Meier, Esther
    Van Gool, Luc
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2010, 50 (01) : 29 - 47
  • [45] Multi-object tracking: a systematic literature review
    Saif Hassan
    Ghulam Mujtaba
    Asif Rajput
    Noureen Fatima
    [J]. Multimedia Tools and Applications, 2024, 83 : 43439 - 43492
  • [46] Appearance Guidance Attention for Multi-Object Tracking
    Chen, Yong
    Huang, Junjie
    Liu, Huanlin
    Huang, Meiyong
    Zou, Zhibo
    [J]. IEEE ACCESS, 2021, 9 : 103184 - 103193
  • [47] Multiple camera fusion for multi-object tracking
    Dockstader, SL
    Tekalp, AM
    [J]. 2001 IEEE WORKSHOP ON MULTI-OBJECT TRACKING, PROCEEDINGS, 2001, : 95 - 102
  • [48] Multi-object Tracking with Conditional Random Field
    Zeng, Xianming
    Wu, Song
    Xiao, Guoqiang
    [J]. NEURAL INFORMATION PROCESSING, ICONIP 2019, PT V, 2019, 1143 : 206 - 214
  • [49] Exploit the Connectivity: Multi-Object Tracking with TrackletNet
    Wang, Gaoang
    Wang, Yizhou
    Zhang, Haotian
    Gu, Renshu
    Hwang, Jenq-Neng
    [J]. PROCEEDINGS OF THE 27TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA (MM'19), 2019, : 482 - 490
  • [50] An Occlusion Tolerent Method for Multi-object Tracking
    Lu, Hong
    Fei, Shumin
    Zheng, Jianyong
    Zhang, Jao
    [J]. 2008 7TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-23, 2008, : 5105 - +