Interacting Tracklets for Multi-Object Tracking

被引:51
|
作者
Lan, Long [1 ]
Wang, Xinchao [2 ]
Zhang, Shiliang [3 ]
Tao, Dacheng [4 ]
Gao, Wen [3 ]
Huang, Thomas S. [5 ]
机构
[1] Natl Univ Def Technol, State Key Lab High Performance Comp, Changsha 410073, Hunan, Peoples R China
[2] Stevens Inst Technol, Dept Comp Sci, Hoboken, NJ 07030 USA
[3] Peking Univ, Dept Comp Sci, Beijing 100871, Peoples R China
[4] Univ Sydney, Fac Engn & Informat Technol, UBTECH Sydney Artificial Intelligence Ctr, Sch Informat Technol, Darlington 2008, NSW, England
[5] Univ Illinois, Beckman Inst, Image Format & Proc Grp, Urbana, IL 61801 USA
基金
澳大利亚研究理事会;
关键词
Multi-object tracking; tracklets; interactions;
D O I
10.1109/TIP.2018.2843129
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose to exploit the interactions between non-associable tracklets to facilitate multi-object tracking. We introduce two types of tracklet interactions, close interaction and distant interaction. The close interaction imposes physical constraints between two temporally overlapping tracklets, and more importantly, allows us to learn local classifiers to distinguish targets that are close to each other in the spatiotemporal domain. The distant interaction, on the other hand, accounts for the higher order motion and appearance consistency between two temporally isolated tracklets. Our approach is modeled as a binary labeling problem and solved using the efficient quadratic pseudo-Boolean optimization. It yields promising tracking performance on the challenging PETSO9 and MOT16 dataset.
引用
收藏
页码:4585 / 4597
页数:13
相关论文
共 50 条
  • [31] Joint detection and online multi-object tracking
    Kieritz, Hilke
    Huebner, Wolfgang
    Arens, Michael
    [J]. PROCEEDINGS 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2018, : 1540 - 1548
  • [32] Multi-object tracking using dominant sets
    Tesfaye, Yonatan T.
    Zemene, Eyasu
    Pelillo, Marcello
    Prati, Andrea
    [J]. IET COMPUTER VISION, 2016, 10 (04) : 289 - 298
  • [33] Multi-Object Tracking Using TLD Framework
    Sharma, Swati Naresh
    Khachane, Ajitkumar
    Motwani, Dilip
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON RECENT TRENDS IN ELECTRONICS, INFORMATION & COMMUNICATION TECHNOLOGY (RTEICT), 2016, : 1766 - 1769
  • [34] Variational particle filter for multi-object tracking
    Jin, Yonggang
    Mokhtarian, Farzin
    [J]. 2007 IEEE 11TH INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOLS 1-6, 2007, : 976 - 983
  • [35] Multi-Object Tracking with Micro Aerial Vehicle
    Ji Y.
    Li W.
    Li X.
    Zhang S.
    Pan F.
    [J]. Journal of Beijing Institute of Technology (English Edition), 2019, 28 (03): : 389 - 398
  • [36] Multi-Object Tracking Meets Moving UAV
    Liu, Shuai
    Li, Xin
    Lu, Huchuan
    He, You
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 8866 - 8875
  • [37] Learning key lines for multi-object tracking
    Li, Yi-Fan
    Ji, Hong-Bing
    Chen, Xi
    Yang, Yong-Liang
    Lai, Yu-Kun
    [J]. COMPUTER VISION AND IMAGE UNDERSTANDING, 2024, 241
  • [38] MULTI-OBJECT TRACKING USING SPARSE REPRESENTATION
    Lu, Weizhi
    Bai, Cong
    Kpalma, Kidiyo
    Ronsin, Joseph
    [J]. 2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 2312 - 2316
  • [39] Automatic Sheep Counting by Multi-object Tracking
    Xu, Jingsong
    Yu, Litao
    Zhang, Jian
    Wu, Qiang
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON VISUAL COMMUNICATIONS AND IMAGE PROCESSING (VCIP), 2020, : 257 - 257
  • [40] Multi-Object Tracking Based on Formation Stability
    Xu, Liang
    Li, Weihai
    [J]. NINTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2017), 2017, 10420