Relational Prior for Multi-Object Tracking

被引:0
|
作者
Moskalev, Artem [1 ]
Sosnovik, Ivan [1 ]
Smeulders, Arnold [1 ]
机构
[1] Univ Amsterdam, UvA Bosch Delta Lab, Amsterdam, Netherlands
关键词
D O I
10.1109/ICCVW54120.2021.00126
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Tracking multiple objects individually differs from tracking groups of related objects. When an object is a part of the group, its trajectory is conditioned on the trajectories of the other group members. Most of the current state-of-the-art trackers follow the approach of tracking each object independently, with the mechanism to handle the overlapping trajectories where necessary. Such an approach does not take inter-object relations into account, which may cause unreliable tracking for the members of the groups, especially in crowded scenarios, where individual cues become unreliable. To overcome these limitations, we propose a plug-in Relation Encoding Module (REM). REM encodes relations between tracked objects by running a message passing over a spatio-temporal graph of tracked instances, computing the relation embeddings. The relation embeddings then serve as a prior for predicting future positions of the objects. Our experiments on MOT17 and MOT20 benchmarks demonstrate that extending a tracker with relational prior improves tracking quality.
引用
收藏
页码:1081 / 1085
页数:5
相关论文
共 50 条
  • [1] Multi-object trajectory tracking
    Han, Mei
    Xu, Wei
    Tao, Hai
    Gong, Yihong
    [J]. MACHINE VISION AND APPLICATIONS, 2007, 18 (3-4) : 221 - 232
  • [2] Referring Multi-Object Tracking
    Wu, Dongming
    Han, Wencheng
    Wang, Tiancai
    Dong, Xingping
    Zhang, Xiangyu
    Shen, Jianbing
    [J]. 2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 14633 - 14642
  • [3] Multi-object tracking in video
    Agbinya, JI
    Rees, D
    [J]. REAL-TIME IMAGING, 1999, 5 (05) : 295 - 304
  • [4] Multi-object trajectory tracking
    Mei Han
    Wei Xu
    Hai Tao
    Yihong Gong
    [J]. Machine Vision and Applications, 2007, 18 : 221 - 232
  • [5] Multi-object tracking through learning relational appearance features and motion patterns
    Gwak, Jeonghwan
    [J]. COMPUTER VISION AND IMAGE UNDERSTANDING, 2017, 162 : 103 - 115
  • [6] MULTI-OBJECT TRACKING AS ATTENTION MECHANISM
    Fukui, Hiroshi
    Miyagawa, Taiki
    Morishita, Yusuke
    [J]. 2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 505 - 509
  • [7] Multi-object tracking of human spermatozoa
    Sorensen, Lauge
    Ostergaard, Jakob
    Johansen, Peter
    de Bruijne, Marleen
    [J]. MEDICAL IMAGING 2008: IMAGE PROCESSING, PTS 1-3, 2008, 6914
  • [8] MOTS: Multi-Object Tracking and Segmentation
    Voigtlaender, Paul
    Krause, Michael
    Osep, Aljosa
    Luiten, Jonathon
    Sekar, Berin Balachandar Gnana
    Geiger, Andreas
    Leibe, Bastian
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 7934 - 7943
  • [9] Interacting Tracklets for Multi-Object Tracking
    Lan, Long
    Wang, Xinchao
    Zhang, Shiliang
    Tao, Dacheng
    Gao, Wen
    Huang, Thomas S.
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (09) : 4585 - 4597
  • [10] TrackFormer: Multi-Object Tracking with Transformers
    Meinhardt, Tim
    Kirillov, Alexander
    Leal-Taixe, Laura
    Feichtenhofer, Christoph
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 8834 - 8844