Model-based analysis of tiling-arrays for ChIP-chip

被引:327
|
作者
Johnson, W. Evan
Li, Wei
Meyer, Clifford A.
Gottardo, Raphael
Carroll, Jason S.
Brown, Myles
Liu, X. Shirley
机构
[1] Dana Farber Canc Inst, Dept Biostat & Computat Biol, Boston, MA 02115 USA
[2] Dana Farber Canc Inst, Dept Med Oncol, Boston, MA 02115 USA
[3] Harvard Univ, Sch Med, Boston, MA 02115 USA
[4] Harvard Univ, Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA
[5] Univ British Columbia, Dept Stat, Vancouver, BC V6T 1Z2, Canada
关键词
functional genomics; genome tiling microarrays; model-based probe analysis; transcription regulation;
D O I
10.1073/pnas.0601180103
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We propose a fast and powerful analysis algorithm, titled Modelbased Analysis of Tiling-arrays (MAT), to reliably detect regions enriched by transcription factor chromatin immunoprecipitation (ChIP) on Affymetrix tiling arrays (ChIP-chip). MAT models the baseline probe behavior by considering probe sequence and copy number on each array. It standardizes the probe value through the probe model, eliminating the need for sample normalization. MAT uses an innovative function to score regions for ChIP enrichment, which allows robust P value and false discovery rate calculations. MAT can detect ChIP regions from a single ChIP sample, multiple ChIP samples, or multiple ChIP samples with controls with increasing accuracy. The single-array ChIP region detection feature minimizes the time and monetary costs for laboratories newly adopting ChIP-chip to test their protocols and antibodies and allows established ChIP-chip laboratories to identify samples with questionable quality that might contaminate their data. MAT is developed in open-source Python and is available at http://chip. dfci.harvard.edu/-wli/MAT. The general framework presented here can be extended to other oligonucleoticle microarrays and tiling array platforms.
引用
收藏
页码:12457 / 12462
页数:6
相关论文
共 50 条
  • [11] A hidden Markov model for analyzing ChIP-chip experiments on genome tiling arrays and its application to p53 binding sequences
    Li, W
    Meyer, CA
    Liu, XS
    BIOINFORMATICS, 2005, 21 : I274 - I282
  • [12] Statistics for ChIP-chip and DNase hypersensitivity experiments on NimbleGen arrays
    Scacheri, Peter C.
    Crawford, Gregory E.
    Davis, Sean
    DNA MICROARRAYS, PART B: DATABASES AND STATISTICS, 2006, 411 : 270 - +
  • [13] An integrated workflow for analysis of ChIP-chip data
    Weigelt, Karin
    Moehle, Christoph
    Stempfl, Thomas
    Weber, Bernhard
    Langmann, Thomas
    BIOTECHNIQUES, 2008, 45 (02) : 131 - +
  • [14] Hierarchical hidden Markov model with application to joint analysis of ChIP-chip and ChIP-seq data
    Choi, Hyungwon
    Nesvizhskii, Alexey I.
    Ghosh, Debashis
    Qin, Zhaohui S.
    BIOINFORMATICS, 2009, 25 (14) : 1715 - 1721
  • [15] ChIP-PED enhances the analysis of ChIP-seq and ChIP-chip data
    Wu, George
    Yustein, Jason T.
    McCall, Matthew N.
    Zilliox, Michael
    Irizarry, Rafael A.
    Zeller, Karen
    Dang, Chi V.
    Ji, Hongkai
    BIOINFORMATICS, 2013, 29 (09) : 1182 - 1189
  • [16] JAMIE: joint analysis of multiple ChIP-chip experiments
    Wu, Hao
    Ji, Hongkai
    BIOINFORMATICS, 2010, 26 (15) : 1864 - 1870
  • [17] A flexible and powerful bayesian hierarchical model for ChIP-chip experiments
    Gottardo, Raphael
    Li, Wei
    Johnson, W. Evan
    Liu, X. Shirley
    BIOMETRICS, 2008, 64 (02) : 468 - 478
  • [18] Genome-Wide Occupancy Analysis by ChIP-chip and ChIP-Seq
    Hao, Hong
    RETINAL DEGENERATIVE DISEASES, 2012, 723 : 753 - 759
  • [19] Parameter estimation for robust HMM analysis of ChIP-chip data
    Humburg, Peter
    Bulger, David
    Stone, Glenn
    BMC BIOINFORMATICS, 2008, 9 (1)
  • [20] Parameter estimation for robust HMM analysis of ChIP-chip data
    Peter Humburg
    David Bulger
    Glenn Stone
    BMC Bioinformatics, 9