Parameter estimation for robust HMM analysis of ChIP-chip data

被引:18
|
作者
Humburg, Peter [1 ,2 ]
Bulger, David [1 ]
Stone, Glenn [2 ]
机构
[1] Macquarie Univ, Dept Stat, N Ryde, NSW 2109, Australia
[2] CSIRO Math & Informat Sci, N Ryde, NSW 2113, Australia
关键词
Hidden Markov models;
D O I
10.1186/1471-2105-9-343
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: Tiling arrays are an important tool for the study of transcriptional activity, protein-DNA interactions and chromatin structure on a genome-wide scale at high resolution. Although hidden Markov models have been used successfully to analyse tiling array data, parameter estimation for these models is typically ad hoc. Especially in the context of ChIP-chip experiments, no standard procedures exist to obtain parameter estimates from the data. Common methods for the calculation of maximum likelihood estimates such as the Baum-Welch algorithm or Viterbi training are rarely applied in the context of tiling array analysis. Results: Here we develop a hidden Markov model for the analysis of chromatin structure ChIP-chip tiling array data, using t emission distributions to increase robustness towards outliers. Maximum likelihood estimates are used for all model parameters. Two different approaches to parameter estimation are investigated and combined into an efficient procedure. Conclusion: We illustrate an efficient parameter estimation procedure that can be used for HMM based methods in general and leads to a clear increase in performance when compared to the use of ad hoc estimates. The resulting hidden Markov model outperforms established methods like TileMap in the context of histone modification studies.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Parameter estimation for robust HMM analysis of ChIP-chip data
    Peter Humburg
    David Bulger
    Glenn Stone
    [J]. BMC Bioinformatics, 9
  • [2] ChIP-chip: Data, model, and analysis
    Zheng, Ming
    Barrera, Leah O.
    Ren, Bing
    Wu, Ying Nian
    [J]. BIOMETRICS, 2007, 63 (03) : 787 - 796
  • [3] An integrated workflow for analysis of ChIP-chip data
    Weigelt, Karin
    Moehle, Christoph
    Stempfl, Thomas
    Weber, Bernhard
    Langmann, Thomas
    [J]. BIOTECHNIQUES, 2008, 45 (02) : 131 - +
  • [4] Utilizing gene pair orientations for HMM-based analysis of promoter array ChIP-chip data
    Seifert, Michael
    Keilwagen, Jens
    Strickert, Marc
    Grosse, Ivo
    [J]. BIOINFORMATICS, 2009, 25 (16) : 2118 - 2125
  • [5] A hidden Ising model for ChIP-chip data analysis
    Mo, Qianxing
    Liang, Faming
    [J]. BIOINFORMATICS, 2010, 26 (06) : 777 - 783
  • [6] ChIP-PED enhances the analysis of ChIP-seq and ChIP-chip data
    Wu, George
    Yustein, Jason T.
    McCall, Matthew N.
    Zilliox, Michael
    Irizarry, Rafael A.
    Zeller, Karen
    Dang, Chi V.
    Ji, Hongkai
    [J]. BIOINFORMATICS, 2013, 29 (09) : 1182 - 1189
  • [7] NTAP: for NimbleGen tiling array ChIP-chip data analysis
    He, Kun
    Li, Xueyong
    Zhou, Junli
    Deng, Xing-Wang
    Zhao, Hongyu
    Luo, Jingchu
    [J]. BIOINFORMATICS, 2009, 25 (14) : 1838 - 1840
  • [8] Normalization and experimental design for ChIP-chip data
    Peng, Shouyong
    Alekseyenko, Artyom A.
    Larschan, Erica
    Kuroda, Mitzi I.
    Park, Peter J.
    [J]. BMC BIOINFORMATICS, 2007, 8 (1)
  • [9] ChIP-chip versus ChIP-seq: Lessons for experimental design and data analysis
    Joshua WK Ho
    Eric Bishop
    Peter V Karchenko
    Nicolas Nègre
    Kevin P White
    Peter J Park
    [J]. BMC Genomics, 12
  • [10] Normalization and experimental design for ChIP-chip data
    Shouyong Peng
    Artyom A Alekseyenko
    Erica Larschan
    Mitzi I Kuroda
    Peter J Park
    [J]. BMC Bioinformatics, 8