Model-based analysis of tiling-arrays for ChIP-chip

被引:327
|
作者
Johnson, W. Evan
Li, Wei
Meyer, Clifford A.
Gottardo, Raphael
Carroll, Jason S.
Brown, Myles
Liu, X. Shirley
机构
[1] Dana Farber Canc Inst, Dept Biostat & Computat Biol, Boston, MA 02115 USA
[2] Dana Farber Canc Inst, Dept Med Oncol, Boston, MA 02115 USA
[3] Harvard Univ, Sch Med, Boston, MA 02115 USA
[4] Harvard Univ, Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA
[5] Univ British Columbia, Dept Stat, Vancouver, BC V6T 1Z2, Canada
关键词
functional genomics; genome tiling microarrays; model-based probe analysis; transcription regulation;
D O I
10.1073/pnas.0601180103
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We propose a fast and powerful analysis algorithm, titled Modelbased Analysis of Tiling-arrays (MAT), to reliably detect regions enriched by transcription factor chromatin immunoprecipitation (ChIP) on Affymetrix tiling arrays (ChIP-chip). MAT models the baseline probe behavior by considering probe sequence and copy number on each array. It standardizes the probe value through the probe model, eliminating the need for sample normalization. MAT uses an innovative function to score regions for ChIP enrichment, which allows robust P value and false discovery rate calculations. MAT can detect ChIP regions from a single ChIP sample, multiple ChIP samples, or multiple ChIP samples with controls with increasing accuracy. The single-array ChIP region detection feature minimizes the time and monetary costs for laboratories newly adopting ChIP-chip to test their protocols and antibodies and allows established ChIP-chip laboratories to identify samples with questionable quality that might contaminate their data. MAT is developed in open-source Python and is available at http://chip. dfci.harvard.edu/-wli/MAT. The general framework presented here can be extended to other oligonucleoticle microarrays and tiling array platforms.
引用
收藏
页码:12457 / 12462
页数:6
相关论文
共 50 条
  • [41] Analysis of the mouse embryonic stem cell regulatory networks obtained by ChIP-chip and ChIP-PET
    Mathur, Divya
    Danford, Timothy W.
    Boyer, Laurie A.
    Young, Richard A.
    Gifford, David K.
    Jaenisch, Rudolf
    GENOME BIOLOGY, 2008, 9 (08)
  • [42] Deciphering transcription factor binding patterns from genome-wide high density ChIP-chip tiling array data
    Juntao Li
    Lei Zhu
    Majid Eshaghi
    Jianhua Liu
    Krishna Murthy R Karuturi
    BMC Proceedings, 5 (Suppl 2)
  • [43] HAT: Hypergeometric Analysis of Tiling-arrays with application to promoter-GeneChip data
    Erdogan Taskesen
    Renee Beekman
    Jeroen de Ridder
    Bas J Wouters
    Justine K Peeters
    Ivo P Touw
    Marcel JT Reinders
    Ruud Delwel
    BMC Bioinformatics, 11
  • [44] Bayesian Modeling of ChIP-chip Data Through a High-Order Ising Model
    Mo, Qianxing
    Liang, Faming
    BIOMETRICS, 2010, 66 (04) : 1284 - 1294
  • [45] INTEGRATIVE ANALYSES FOR OMICS DATA: A BAYESIAN MIXTURE MODEL TO ASSESS THE CONCORDANCE OF ChIP-chip AND ChIP-seq MEASUREMENTS
    Schaefer, Martin
    Lkhagvasuren, Otgonzul
    Klein, Hans-Ulrich
    Elling, Christian
    Wuestefeld, Torsten
    Mueller-Tidow, Carsten
    Zender, Lars
    Koschmieder, Steffen
    Dugas, Martin
    Ickstadt, Katja
    JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH-PART A-CURRENT ISSUES, 2012, 75 (8-10): : 461 - 470
  • [46] Profiling of promoter occupancy by PPARα in human hepatoma cells via ChIP-chip analysis
    van der Meer, David L. M.
    Degenhardt, Tatjana
    Vaisanen, Sami
    de Groot, Philip J.
    Heinaniemi, Merja
    de Vries, Sacco C.
    Muller, Michael
    Carlberg, Carsten
    Kersten, Sander
    NUCLEIC ACIDS RESEARCH, 2010, 38 (09) : 2839 - 2850
  • [47] MM-ChIP enables integrative analysis of cross-platform and between-laboratory ChIP-chip or ChIP-seq data
    Chen, Yiwen
    Meyer, Clifford A.
    Liu, Tao
    Li, Wei
    Liu, Jun S.
    Liu, Xiaole Shirley
    GENOME BIOLOGY, 2011, 12 (02):
  • [48] MultiChIPmixHMM: an R package for ChIP-chip data analysis modeling spatial dependencies and multiple replicates
    Caroline Bérard
    Michael Seifert
    Tristan Mary-Huard
    Marie-Laure Martin-Magniette
    BMC Bioinformatics, 14
  • [49] MultiChIPmixHMM: an R package for ChIP-chip data analysis modeling spatial dependencies and multiple replicates
    Berard, Caroline
    Seifert, Michael
    Mary-Huard, Tristan
    Martin-Magniette, Marie-Laure
    BMC BIOINFORMATICS, 2013, 14
  • [50] MM-ChIP enables integrative analysis of cross-platform and between-laboratory ChIP-chip or ChIP-seq data
    Yiwen Chen
    Clifford A Meyer
    Tao Liu
    Wei Li
    Jun S Liu
    Xiaole Shirley Liu
    Genome Biology, 12