Model-based analysis of tiling-arrays for ChIP-chip

被引:327
|
作者
Johnson, W. Evan
Li, Wei
Meyer, Clifford A.
Gottardo, Raphael
Carroll, Jason S.
Brown, Myles
Liu, X. Shirley
机构
[1] Dana Farber Canc Inst, Dept Biostat & Computat Biol, Boston, MA 02115 USA
[2] Dana Farber Canc Inst, Dept Med Oncol, Boston, MA 02115 USA
[3] Harvard Univ, Sch Med, Boston, MA 02115 USA
[4] Harvard Univ, Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA
[5] Univ British Columbia, Dept Stat, Vancouver, BC V6T 1Z2, Canada
关键词
functional genomics; genome tiling microarrays; model-based probe analysis; transcription regulation;
D O I
10.1073/pnas.0601180103
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We propose a fast and powerful analysis algorithm, titled Modelbased Analysis of Tiling-arrays (MAT), to reliably detect regions enriched by transcription factor chromatin immunoprecipitation (ChIP) on Affymetrix tiling arrays (ChIP-chip). MAT models the baseline probe behavior by considering probe sequence and copy number on each array. It standardizes the probe value through the probe model, eliminating the need for sample normalization. MAT uses an innovative function to score regions for ChIP enrichment, which allows robust P value and false discovery rate calculations. MAT can detect ChIP regions from a single ChIP sample, multiple ChIP samples, or multiple ChIP samples with controls with increasing accuracy. The single-array ChIP region detection feature minimizes the time and monetary costs for laboratories newly adopting ChIP-chip to test their protocols and antibodies and allows established ChIP-chip laboratories to identify samples with questionable quality that might contaminate their data. MAT is developed in open-source Python and is available at http://chip. dfci.harvard.edu/-wli/MAT. The general framework presented here can be extended to other oligonucleoticle microarrays and tiling array platforms.
引用
收藏
页码:12457 / 12462
页数:6
相关论文
共 50 条
  • [31] An integrative ChIP-chip and gene expression profiling to model SMAD regulatory modules
    Qin, Huaxia
    Chan, Michael W. Y.
    Liyanarachchi, Sandya
    Balch, Curtis
    Potter, Dustin
    Souriraj, Irene J.
    Cheng, Alfred S. L.
    Agosto-Perez, Francisco J.
    Nikonova, Elena V.
    Yan, Pearlly S.
    Lin, Huey-Jen
    Nephew, Kenneth P.
    Saltz, Joel H.
    Showe, Louise C.
    Huang, Tim H. M.
    Davuluri, Ramana V.
    BMC SYSTEMS BIOLOGY, 2009, 3
  • [32] Understanding mechanistic basis for QS signaling via ChIP-Chip analysis
    Byrd, Christopher M.
    Xiong, Zhiqiang
    Tsao, Chen-Yu
    Bentley, William E.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2010, 239
  • [33] Meta-analysis based on control of false discovery rate: combining yeast ChIP-chip datasets
    Pyne, Saumyadipta
    Futcher, Bruce
    Skiena, Steve
    BIOINFORMATICS, 2006, 22 (20) : 2516 - 2522
  • [34] A supervised hidden markov model framework for efficiently segmenting tiling array data in transcriptional and chIP-chip experiments: systematically incorporating validated biological knowledge
    Du, Jiang
    Rozowsky, Joel S.
    Korbel, Jan O.
    Zhang, Zhengdong D.
    Royce, Thomas E.
    Schultz, Martin H.
    Snyder, Michael
    Gerstein, Mark
    BIOINFORMATICS, 2006, 22 (24) : 3016 - 3024
  • [35] HAT: Hypergeometric Analysis of Tiling-arrays with application to promoter-GeneChip data
    Taskesen, Erdogan
    Beekman, Renee
    de Ridder, Jeroen
    Wouters, Bas J.
    Peeters, Justine K.
    Touw, Ivo P.
    Reinders, Marcel J. T.
    Delwel, Ruud
    BMC BIOINFORMATICS, 2010, 11
  • [36] ChIP-chip analysis of neurexins and other candidate genes for addiction and neuropsychiatric disorders
    Pedrosa, Erika
    Kaushik, Sashank
    Lachman, Herbert M.
    JOURNAL OF NEUROGENETICS, 2010, 24 (01) : 5 - U23
  • [37] Analysis of the mouse embryonic stem cell regulatory networks obtained by ChIP-chip and ChIP-PET
    Divya Mathur
    Timothy W Danford
    Laurie A Boyer
    Richard A Young
    David K Gifford
    Rudolf Jaenisch
    Genome Biology, 9
  • [38] Profiling of the BRCA1 transcriptome through microarray and ChIP-chip analysis
    Gorski, Julia J.
    Savage, Kienan I.
    Mulligan, Jude M.
    McDade, Simon S.
    Blayney, Jaine K.
    Ge, Zhaoping
    Harkin, D. Paul
    NUCLEIC ACIDS RESEARCH, 2011, 39 (22) : 9536 - 9548
  • [39] Deciphering Transcription Factor Binding Patterns from Genome-Wide High Density ChIP-chip Tiling Array Data
    Li, Juntao
    Zhu, Lei
    Eshaghi, Majid
    Liu, Jianhua
    Karuturi, Radha Krishna Murthy
    BIOINFORMATICS RESEARCH AND APPLICATIONS, PROCEEDINGS, 2010, 6053 : 230 - 240
  • [40] Utilizing gene pair orientations for HMM-based analysis of promoter array ChIP-chip data
    Seifert, Michael
    Keilwagen, Jens
    Strickert, Marc
    Grosse, Ivo
    BIOINFORMATICS, 2009, 25 (16) : 2118 - 2125