Collisions between discrete spatiotemporal Ginzburg-Landau solitons

被引:8
|
作者
Mihalache, D. [1 ]
Mazilu, D. [1 ]
Lederer, F. [2 ]
机构
[1] Horia Hulubei Natl Inst Phys & Nucl Engn IFIN HH, Magurele 077125, Romania
[2] Univ Jena, Inst Solid State Theory & Theoret Opt, D-07743 Jena, Germany
来源
关键词
BREATHING LOCALIZED SOLUTIONS; SURFACE SOLITONS; SOLITARY WAVES; ARRAYS; PROPAGATION; POLARITONS; EQUATION; COLLAPSE; FRONTS;
D O I
10.1140/epjst/e2009-01079-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We report systematic results of collisions between discrete spatiotemporal Ginzburg-Landau solitons in waveguide arrays. Depending on the value of the kick parameter (collision momentum), four generic outcomes are identified in the case of collision of two identical solitons located at equal distances from the edge of the waveguide array: (a) merger of the solitons into a single one, at small values of the kick parameter, (b) creation of an extra soliton at intermediate values of the collision momentum, (c) quasi-elastic interactions at both intermediate values of the kick parameter (for relatively small values of the cubic gain) and at large values of the kick parameter (for relatively high values of cubic gain), and (d) soliton spreading at relatively large values of the collision momentum but only in the case of relatively small values of the cubic gain. In the case of collision of two non-identical solitons located at different distances from the edge of the waveguide array four generic outcomes were identified too: (e) soliton bouncing, accompanied by a sharp modification of soliton velocities during the interaction process, for relatively small values of the collision momentum, (f) soliton creation at intermediate values of the kick parameter and for relatively low values of the cubic gain, (g) soliton spreading (in time) at intermediate values of the collision momentum and for relatively high values of the cubic gain, and (h) quasi-elastic interactions at large values of the the kick parameter.
引用
收藏
页码:267 / 279
页数:13
相关论文
共 50 条
  • [21] Knot solitons in a modified Ginzburg-Landau model
    Jaeykkae, Juha
    Palmu, Joonatan
    PHYSICAL REVIEW D, 2011, 83 (10):
  • [22] Stable solitons of quadratic Ginzburg-Landau equations
    Crasovan, LC
    Malomed, BA
    Mihalache, D
    Mazilu, D
    Lederer, F
    PHYSICAL REVIEW E, 2000, 62 (01) : 1322 - 1327
  • [23] Accessible solitons in complex Ginzburg-Landau media
    He, Yingji
    Malomed, Boris A.
    PHYSICAL REVIEW E, 2013, 88 (04):
  • [24] Optical solitons with complex Ginzburg-Landau equation
    Mirzazadeh, Mohammad
    Ekici, Mehmet
    Sonmezoglu, Abdullah
    Eslami, Mostafa
    Zhou, Qin
    Kara, Abdul H.
    Milovic, Daniela
    Majid, Fayequa B.
    Biswas, Anjan
    Belic, Milivoj
    NONLINEAR DYNAMICS, 2016, 85 (03) : 1979 - 2016
  • [25] Self-trapped spatiotemporal necklace-ring solitons in the Ginzburg-Landau equation
    He, Y. J.
    Fan, H. H.
    Dong, J. W.
    Wang, H. Z.
    PHYSICAL REVIEW E, 2006, 74 (01):
  • [26] Phase controlling of collisions between solitons in the two-dimensional complex Ginzburg-Landau equation without viscosity
    Liu, Bin
    He, Xing-Dao
    Li, Shu-Jing
    PHYSICAL REVIEW E, 2011, 84 (05):
  • [27] Stability analysis of fundamental dissipative Ginzburg-Landau solitons
    Aleksic, Branislav
    Zarkov, Boban
    Skarka, Vladimir
    Aleksic, Najdan
    PHYSICA SCRIPTA, 2012, T149
  • [28] Dissipative Solitons in Coupled Complex Ginzburg-Landau Equations
    Pak, On Shun
    Lam, Chun Kit
    Nakkeeran, Kaliyaperumal
    Malomed, Boris
    Chow, Kwok Wing
    Senthilnathan, Krishnamoorthy
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2009, 78 (08)
  • [29] Stabilization of dark solitons in the cubic Ginzburg-Landau equation
    Efremidis, N
    Hizanidis, K
    Nistazakis, HE
    Frantzeskakis, DJ
    Malomed, BA
    PHYSICAL REVIEW E, 2000, 62 (05) : 7410 - 7414
  • [30] Theory of dissipative solitons in complex Ginzburg-Landau systems
    Chen, Shihua
    PHYSICAL REVIEW E, 2008, 78 (02):