Knot solitons in a modified Ginzburg-Landau model

被引:0
|
作者
Jaeykkae, Juha [1 ]
Palmu, Joonatan [2 ]
机构
[1] Univ Leeds, Sch Math, Leeds LS2 9JT, W Yorkshire, England
[2] Univ Turku, Dept Phys & Astron, FI-20014 Turku, Finland
来源
PHYSICAL REVIEW D | 2011年 / 83卷 / 10期
基金
芬兰科学院; 英国工程与自然科学研究理事会;
关键词
D O I
10.1103/PhysRevD.83.105015
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study a modified version of the Ginzburg-Landau model suggested by Ward and show that Hopfions exist in it as stable static solutions, for values of the Hopf invariant up to at least 7. We also find that their properties closely follow those of their counterparts in the Faddeev-Skyrme model. Finally, we lend support to Babaev's conjecture that longer core lengths yield more stable solitons and propose a possible mechanism for constructing Hopfions in pure Ginzburg-Landau model.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Discrete Ginzburg-Landau solitons
    Efremidis, NK
    Christodoulides, DN
    PHYSICAL REVIEW E, 2003, 67 (02):
  • [2] Stability of topological solitons in modified two-component Ginzburg-Landau model
    Jaykka, Juha
    PHYSICAL REVIEW D, 2009, 79 (06):
  • [3] Spatiotemporal surface ginzburg-landau solitons
    Mihalache, Dumitru
    Mazilu, Dumitru
    Lederer, Falk
    Kivshar, Yuri S.
    PHYSICAL REVIEW A, 2008, 77 (04):
  • [4] Gap solitons in Ginzburg-Landau media
    Sakaguchi, Hidetsugu
    Malomed, Boris A.
    PHYSICAL REVIEW E, 2008, 77 (05):
  • [5] Attractors of Modified Coupled Ginzburg-Landau Model
    Chen S.
    Liu S.
    Mathematical Problems in Engineering, 2023, 2023
  • [6] Fragmented superconductivity in the Hubbard model as solitons in Ginzburg-Landau theory
    Baldelli, Niccolo
    Karlsson, Hannes
    Kloss, Benedikt
    Fishman, Matthew
    Wietek, Alexander
    NPJ QUANTUM MATERIALS, 2025, 10 (01)
  • [7] Optical solitons for complex Ginzburg-Landau model in nonlinear optics
    Inc, Mustafa
    Aliyu, Aliyu Isa
    Yusuf, Abdullahi
    Baleanu, Dumitru
    OPTIK, 2018, 158 : 368 - 375
  • [8] Ginzburg-Landau spatiotemporal dissipative optical solitons
    Mihalache, D.
    Mazilu, D.
    ROMANIAN REPORTS IN PHYSICS, 2008, 60 (03) : 749 - 761
  • [9] KINKS AND SOLITONS IN THE GENERALIZED GINZBURG-LANDAU EQUATION
    MALOMED, BA
    NEPOMNYASHCHY, AA
    PHYSICAL REVIEW A, 1990, 42 (10): : 6009 - 6014
  • [10] Vortex solitons of the discrete Ginzburg-Landau equation
    Mejia-Cortes, C.
    Soto-Crespo, J. M.
    Vicencio, Rodrigo A.
    Molina, Mario I.
    PHYSICAL REVIEW A, 2011, 83 (04):