Knot solitons in a modified Ginzburg-Landau model

被引:0
|
作者
Jaeykkae, Juha [1 ]
Palmu, Joonatan [2 ]
机构
[1] Univ Leeds, Sch Math, Leeds LS2 9JT, W Yorkshire, England
[2] Univ Turku, Dept Phys & Astron, FI-20014 Turku, Finland
来源
PHYSICAL REVIEW D | 2011年 / 83卷 / 10期
基金
芬兰科学院; 英国工程与自然科学研究理事会;
关键词
D O I
10.1103/PhysRevD.83.105015
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study a modified version of the Ginzburg-Landau model suggested by Ward and show that Hopfions exist in it as stable static solutions, for values of the Hopf invariant up to at least 7. We also find that their properties closely follow those of their counterparts in the Faddeev-Skyrme model. Finally, we lend support to Babaev's conjecture that longer core lengths yield more stable solitons and propose a possible mechanism for constructing Hopfions in pure Ginzburg-Landau model.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Stabilization of dark solitons in the cubic Ginzburg-Landau equation
    Efremidis, N
    Hizanidis, K
    Nistazakis, HE
    Frantzeskakis, DJ
    Malomed, BA
    PHYSICAL REVIEW E, 2000, 62 (05) : 7410 - 7414
  • [22] Two-dimensional discrete Ginzburg-Landau solitons
    Efremidis, Nikolaos K.
    Christodoulides, Demetrios N.
    Hizanidis, Kyriakos
    PHYSICAL REVIEW A, 2007, 76 (04):
  • [23] Collisions between discrete spatiotemporal Ginzburg-Landau solitons
    D. Mihalache
    D. Mazilu
    F. Lederer
    The European Physical Journal Special Topics, 2009, 173 : 267 - 279
  • [24] Theory of dissipative solitons in complex Ginzburg-Landau systems
    Chen, Shihua
    PHYSICAL REVIEW E, 2008, 78 (02):
  • [25] Collisions between discrete spatiotemporal Ginzburg-Landau solitons
    Mihalache, D.
    Mazilu, D.
    Lederer, F.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2009, 173 : 267 - 279
  • [26] Stable stationary solitons of the one-dimensional modified complex Ginzburg-Landau equation
    Hong, Woo-Pyo
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2007, 62 (7-8): : 368 - 372
  • [27] Optical Solitons for Complex Ginzburg-Landau Model with Beta Derivative in Nonlinear Optics
    Yusuf, Abdullahi
    Inc, Mustafa
    Aliyu, Aliyu Isa
    Baleanu, Dumitru
    JOURNAL OF ADVANCED PHYSICS, 2018, 7 (02) : 224 - 229
  • [28] Spatiotemporal solitons in the Ginzburg-Landau model with a two-dimensional transverse grating
    Mihalache, D.
    Mazilu, D.
    Lederer, F.
    Leblond, H.
    Malomed, B. A.
    PHYSICAL REVIEW A, 2010, 81 (02):
  • [29] EVOLUTION OF SUBHARMONICS IN A MODIFIED GINZBURG-LANDAU EQUATION
    TREIBER, J
    KITNEY, RI
    PHYSICS LETTERS A, 1988, 132 (2-3) : 93 - 97
  • [30] Ginzburg-Landau vortices:: The static model
    Rivière, T
    ASTERISQUE, 2002, (276) : 73 - +