Knot solitons in a modified Ginzburg-Landau model

被引:0
|
作者
Jaeykkae, Juha [1 ]
Palmu, Joonatan [2 ]
机构
[1] Univ Leeds, Sch Math, Leeds LS2 9JT, W Yorkshire, England
[2] Univ Turku, Dept Phys & Astron, FI-20014 Turku, Finland
来源
PHYSICAL REVIEW D | 2011年 / 83卷 / 10期
基金
芬兰科学院; 英国工程与自然科学研究理事会;
关键词
D O I
10.1103/PhysRevD.83.105015
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study a modified version of the Ginzburg-Landau model suggested by Ward and show that Hopfions exist in it as stable static solutions, for values of the Hopf invariant up to at least 7. We also find that their properties closely follow those of their counterparts in the Faddeev-Skyrme model. Finally, we lend support to Babaev's conjecture that longer core lengths yield more stable solitons and propose a possible mechanism for constructing Hopfions in pure Ginzburg-Landau model.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] THREE-DIMENSIONAL GINZBURG-LANDAU SOLITONS: COLLISION SCENARIOS
    Mihalache, D.
    Mazilu, D.
    ROMANIAN REPORTS IN PHYSICS, 2009, 61 (02) : 175 - 189
  • [42] Dissipative solitons in the discrete Ginzburg-Landau equation with saturable nonlinearity
    Abdullaev, Fatkhulla Kh
    Salerno, Mario
    PHYSICAL REVIEW E, 2018, 97 (05)
  • [43] Bound states of dark solitons in the quintic Ginzburg-Landau equation
    Afanasjev, VV
    Chu, PL
    Malomed, BA
    PHYSICAL REVIEW E, 1998, 57 (01) : 1088 - 1091
  • [44] Optical solitons to the Ginzburg-Landau equation including the parabolic nonlinearity
    Hosseini, K.
    Mirzazadeh, M.
    Akinyemi, L.
    Baleanu, D.
    Salahshour, S.
    OPTICAL AND QUANTUM ELECTRONICS, 2022, 54 (10)
  • [45] DISCRETE GINZBURG-LANDAU SPATIOTEMPORAL OPTICAL SOLITONS: COLLISION SCENARIOS
    Mihalache, D.
    ROMANIAN REPORTS IN PHYSICS, 2010, 62 (04) : 697 - 709
  • [46] Optical solitons of nonlinear complex Ginzburg-Landau equation via two modified expansion schemes
    Zafar, Asim
    Shakeel, Muhammad
    Ali, Asif
    Akinyemi, Lanre
    Rezazadeh, Hadi
    OPTICAL AND QUANTUM ELECTRONICS, 2022, 54 (01)
  • [47] Propagation of three-dimensional optical solitons in fractional complex Ginzburg-Landau model
    Wang, Huiling
    Peng, Xi
    Deng, Hanying
    He, Shangling
    Deng, Dongmei
    He, Yingji
    PHYSICS LETTERS A, 2024, 498
  • [48] ON THE GINZBURG-LANDAU EQUATIONS
    CARROLL, RW
    GLICK, AJ
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1964, 16 (05) : 373 - 384
  • [49] On exact solutions of modified complex Ginzburg-Landau equation
    Yomba, E
    Kofané, TC
    PHYSICA D-NONLINEAR PHENOMENA, 1999, 125 (1-2) : 105 - 122
  • [50] THE GINZBURG-LANDAU EQUATION
    ADOMIAN, G
    MEYERS, RE
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1995, 29 (03) : 3 - 4