Stability of topological solitons in modified two-component Ginzburg-Landau model

被引:6
|
作者
Jaykka, Juha [1 ]
机构
[1] Univ Turku, Dept Phys & Astron, FI-20014 Turku, Finland
来源
PHYSICAL REVIEW D | 2009年 / 79卷 / 06期
基金
芬兰科学院;
关键词
CLASSICAL FIELD-THEORY; FUNCTION MINIMIZATION; HOPF SOLITONS; KNOTS;
D O I
10.1103/PhysRevD.79.065006
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study the stability of Hopfions embedded in a certain modification Ginzburg-Landau model of two equally charged condensates. It has been shown by Ward [Phys. Rev. D 66, 041701(R) (2002)] that a certain modification of the ordinary model results in a system which supports stable topological solitons (Hopfions) for some values of the parameters of the model. We expand the search for stability into a previously uninvestigated region of the parameter space, charting an approximate shape for the stable/unstable boundary and find that, within the accuracy of the numerical methods used, the energy of the stable knot at the boundary is independent of the parameters.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Stability of symmetric vortices for two-component Ginzburg-Landau systems
    Alama, Stan
    Gao, Qi
    JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 267 (06) : 1751 - 1777
  • [2] Knot solitons in a modified Ginzburg-Landau model
    Jaeykkae, Juha
    Palmu, Joonatan
    PHYSICAL REVIEW D, 2011, 83 (10):
  • [3] Inhomogeneous current states in a gauged two-component Ginzburg-Landau model
    Protogenov, AP
    Verbus, VA
    THEORETICAL AND MATHEMATICAL PHYSICS, 2005, 144 (01) : 1040 - 1045
  • [4] Domain walls and textured vortices in a two-component Ginzburg-Landau model
    Madsen, S
    Gaididei, YB
    Christiansen, PL
    Pedersen, NF
    PHYSICS LETTERS A, 2005, 344 (06) : 432 - 440
  • [5] Inhomogeneous Current States in a Gauged Two-Component Ginzburg-Landau Model
    A. P. Protogenov
    V. A. Verbus
    Theoretical and Mathematical Physics, 2005, 144 : 1040 - 1045
  • [6] On Compound Vortices in a Two-Component Ginzburg-Landau Functional
    Alama, Stan
    Bronsard, Lia
    Mironescu, Petru
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2012, 61 (05) : 1861 - 1909
  • [7] Symmetric vortices for two-component Ginzburg-Landau systems
    Alama, Stan
    Gao, Qi
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (10) : 3564 - 3591
  • [8] Variational method applied to two-component Ginzburg-Landau theory
    Romaguera, Antonio R. de C.
    Silva, K. J. S.
    JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (09)
  • [9] Vortices with scalar condensates in two-component Ginzburg-Landau systems
    Forgacs, Peter
    Lukacs, Arpad
    PHYSICS LETTERS B, 2016, 762 : 271 - 275
  • [10] Stability analysis of fundamental dissipative Ginzburg-Landau solitons
    Aleksic, Branislav
    Zarkov, Boban
    Skarka, Vladimir
    Aleksic, Najdan
    PHYSICA SCRIPTA, 2012, T149