Stability of topological solitons in modified two-component Ginzburg-Landau model

被引:6
|
作者
Jaykka, Juha [1 ]
机构
[1] Univ Turku, Dept Phys & Astron, FI-20014 Turku, Finland
来源
PHYSICAL REVIEW D | 2009年 / 79卷 / 06期
基金
芬兰科学院;
关键词
CLASSICAL FIELD-THEORY; FUNCTION MINIMIZATION; HOPF SOLITONS; KNOTS;
D O I
10.1103/PhysRevD.79.065006
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study the stability of Hopfions embedded in a certain modification Ginzburg-Landau model of two equally charged condensates. It has been shown by Ward [Phys. Rev. D 66, 041701(R) (2002)] that a certain modification of the ordinary model results in a system which supports stable topological solitons (Hopfions) for some values of the parameters of the model. We expand the search for stability into a previously uninvestigated region of the parameter space, charting an approximate shape for the stable/unstable boundary and find that, within the accuracy of the numerical methods used, the energy of the stable knot at the boundary is independent of the parameters.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Attractors of Modified Coupled Ginzburg-Landau Model
    Chen S.
    Liu S.
    Mathematical Problems in Engineering, 2023, 2023
  • [22] Fragmented superconductivity in the Hubbard model as solitons in Ginzburg-Landau theory
    Baldelli, Niccolo
    Karlsson, Hannes
    Kloss, Benedikt
    Fishman, Matthew
    Wietek, Alexander
    NPJ QUANTUM MATERIALS, 2025, 10 (01)
  • [23] Optical solitons for complex Ginzburg-Landau model in nonlinear optics
    Inc, Mustafa
    Aliyu, Aliyu Isa
    Yusuf, Abdullahi
    Baleanu, Dumitru
    OPTIK, 2018, 158 : 368 - 375
  • [24] Topological methods for the Ginzburg-Landau equations
    Almeida, L
    Bethuel, F
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1998, 77 (01): : 1 - 49
  • [25] Optical solitons of nonlinear complex Ginzburg-Landau equation via two modified expansion schemes
    Zafar, Asim
    Shakeel, Muhammad
    Ali, Asif
    Akinyemi, Lanre
    Rezazadeh, Hadi
    OPTICAL AND QUANTUM ELECTRONICS, 2022, 54 (01)
  • [26] Absence of Ginzburg-Landau mechanism for vestigial order in the normal phase above a two-component superconductor
    How, P. T.
    Yip, S. K.
    PHYSICAL REVIEW B, 2023, 107 (10)
  • [27] TOPOLOGICAL METHODS FOR THE GINZBURG-LANDAU EQUATION
    ALMEIDA, L
    BETHUEL, F
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1995, 320 (08): : 935 - 939
  • [28] Stability analysis, optical solitons and complexitons of the two-dimensional complex Ginzburg-Landau equation
    Mao, Jin-Jin
    Tian, Shou-Fu
    Zou, Li
    Zhang, Tian-Tian
    JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 2019, 33 (09) : 1224 - 1238
  • [29] Topological sectors for Ginzburg-Landau energies
    Almeida, L
    REVISTA MATEMATICA IBEROAMERICANA, 1999, 15 (03) : 487 - 545
  • [30] On the stability of the Ginzburg-Landau vortex
    Gravejat, Philippe
    Pacherie, Eliot
    Smets, Didier
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2022, 125 (05) : 1015 - 1065