Stability of topological solitons in modified two-component Ginzburg-Landau model

被引:6
|
作者
Jaykka, Juha [1 ]
机构
[1] Univ Turku, Dept Phys & Astron, FI-20014 Turku, Finland
来源
PHYSICAL REVIEW D | 2009年 / 79卷 / 06期
基金
芬兰科学院;
关键词
CLASSICAL FIELD-THEORY; FUNCTION MINIMIZATION; HOPF SOLITONS; KNOTS;
D O I
10.1103/PhysRevD.79.065006
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study the stability of Hopfions embedded in a certain modification Ginzburg-Landau model of two equally charged condensates. It has been shown by Ward [Phys. Rev. D 66, 041701(R) (2002)] that a certain modification of the ordinary model results in a system which supports stable topological solitons (Hopfions) for some values of the parameters of the model. We expand the search for stability into a previously uninvestigated region of the parameter space, charting an approximate shape for the stable/unstable boundary and find that, within the accuracy of the numerical methods used, the energy of the stable knot at the boundary is independent of the parameters.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Ginzburg-Landau spatiotemporal dissipative optical solitons
    Mihalache, D.
    Mazilu, D.
    ROMANIAN REPORTS IN PHYSICS, 2008, 60 (03) : 749 - 761
  • [32] KINKS AND SOLITONS IN THE GENERALIZED GINZBURG-LANDAU EQUATION
    MALOMED, BA
    NEPOMNYASHCHY, AA
    PHYSICAL REVIEW A, 1990, 42 (10): : 6009 - 6014
  • [33] Vortex solitons of the discrete Ginzburg-Landau equation
    Mejia-Cortes, C.
    Soto-Crespo, J. M.
    Vicencio, Rodrigo A.
    Molina, Mario I.
    PHYSICAL REVIEW A, 2011, 83 (04):
  • [34] Stable solitons of quadratic Ginzburg-Landau equations
    Crasovan, LC
    Malomed, BA
    Mihalache, D
    Mazilu, D
    Lederer, F
    PHYSICAL REVIEW E, 2000, 62 (01) : 1322 - 1327
  • [35] Accessible solitons in complex Ginzburg-Landau media
    He, Yingji
    Malomed, Boris A.
    PHYSICAL REVIEW E, 2013, 88 (04):
  • [36] Optical solitons with complex Ginzburg-Landau equation
    Mirzazadeh, Mohammad
    Ekici, Mehmet
    Sonmezoglu, Abdullah
    Eslami, Mostafa
    Zhou, Qin
    Kara, Abdul H.
    Milovic, Daniela
    Majid, Fayequa B.
    Biswas, Anjan
    Belic, Milivoj
    NONLINEAR DYNAMICS, 2016, 85 (03) : 1979 - 2016
  • [37] Stable vortex solitons in the two-dimensional Ginzburg-Landau equation
    Crasovan, LC
    Malomed, BA
    Mihalache, D
    PHYSICAL REVIEW E, 2001, 63 (01):
  • [38] A modified Ginzburg-Landau model for Josephson junctions in a ring
    Hill, E
    Rubinstein, J
    Sternberg, P
    QUARTERLY OF APPLIED MATHEMATICS, 2002, 60 (03) : 485 - 503
  • [39] Interface and vortex motion in the two-component complex dissipative Ginzburg-Landau equation in two-dimensional space
    Yabunaka, Shunsuke
    PHYSICAL REVIEW E, 2014, 90 (04):
  • [40] STABILITY OF THE GINZBURG-LANDAU SPIN-GLASS MODEL
    NAMBU, S
    PROGRESS OF THEORETICAL PHYSICS, 1983, 70 (03): : 871 - 874