Collisions between discrete spatiotemporal Ginzburg-Landau solitons

被引:8
|
作者
Mihalache, D. [1 ]
Mazilu, D. [1 ]
Lederer, F. [2 ]
机构
[1] Horia Hulubei Natl Inst Phys & Nucl Engn IFIN HH, Magurele 077125, Romania
[2] Univ Jena, Inst Solid State Theory & Theoret Opt, D-07743 Jena, Germany
来源
关键词
BREATHING LOCALIZED SOLUTIONS; SURFACE SOLITONS; SOLITARY WAVES; ARRAYS; PROPAGATION; POLARITONS; EQUATION; COLLAPSE; FRONTS;
D O I
10.1140/epjst/e2009-01079-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We report systematic results of collisions between discrete spatiotemporal Ginzburg-Landau solitons in waveguide arrays. Depending on the value of the kick parameter (collision momentum), four generic outcomes are identified in the case of collision of two identical solitons located at equal distances from the edge of the waveguide array: (a) merger of the solitons into a single one, at small values of the kick parameter, (b) creation of an extra soliton at intermediate values of the collision momentum, (c) quasi-elastic interactions at both intermediate values of the kick parameter (for relatively small values of the cubic gain) and at large values of the kick parameter (for relatively high values of cubic gain), and (d) soliton spreading at relatively large values of the collision momentum but only in the case of relatively small values of the cubic gain. In the case of collision of two non-identical solitons located at different distances from the edge of the waveguide array four generic outcomes were identified too: (e) soliton bouncing, accompanied by a sharp modification of soliton velocities during the interaction process, for relatively small values of the collision momentum, (f) soliton creation at intermediate values of the kick parameter and for relatively low values of the cubic gain, (g) soliton spreading (in time) at intermediate values of the collision momentum and for relatively high values of the cubic gain, and (h) quasi-elastic interactions at large values of the the kick parameter.
引用
收藏
页码:267 / 279
页数:13
相关论文
共 50 条
  • [31] A linear discrete scheme for the Ginzburg-Landau equation
    Lue, Shujuan
    Lu, Qishao
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2008, 85 (05) : 745 - 758
  • [32] TRANSITION TO TURBULENCE IN A DISCRETE GINZBURG-LANDAU MODEL
    BOHR, T
    PEDERSEN, AW
    JENSEN, MH
    PHYSICAL REVIEW A, 1990, 42 (06): : 3626 - 3629
  • [33] Collisions between coaxial vortex solitons in the three-dimensional cubic-quintic complex Ginzburg-Landau equation
    Mihalache, D.
    Mazilu, D.
    Lederer, F.
    Leblond, H.
    Malomed, B. A.
    PHYSICAL REVIEW A, 2008, 77 (03):
  • [34] Generalized spatiotemporal chaos synchronization of the Ginzburg-Landau equation
    Jin Ying-Hua
    Xu Zhen-Yuan
    CHINESE PHYSICS B, 2011, 20 (12)
  • [35] Generalized spatiotemporal chaos synchronization of the Ginzburg-Landau equation
    金英花
    徐振源
    Chinese Physics B, 2011, (12) : 134 - 146
  • [36] Spatiotemporal structure of pulsating solitons in the cubic-quintic Ginzburg-Landau equation: A novel variational formulation
    Mancas, Stefan C.
    Choudhury, S. Roy
    CHAOS SOLITONS & FRACTALS, 2009, 40 (01) : 91 - 105
  • [37] Dissipative solitons for generalizations of the cubic complex Ginzburg-Landau equation
    Carvalho, M., I
    Facao, M.
    PHYSICAL REVIEW E, 2019, 100 (03)
  • [38] THREE-DIMENSIONAL GINZBURG-LANDAU SOLITONS: COLLISION SCENARIOS
    Mihalache, D.
    Mazilu, D.
    ROMANIAN REPORTS IN PHYSICS, 2009, 61 (02) : 175 - 189
  • [39] Fragmented superconductivity in the Hubbard model as solitons in Ginzburg-Landau theory
    Baldelli, Niccolo
    Karlsson, Hannes
    Kloss, Benedikt
    Fishman, Matthew
    Wietek, Alexander
    NPJ QUANTUM MATERIALS, 2025, 10 (01)
  • [40] Bound states of dark solitons in the quintic Ginzburg-Landau equation
    Afanasjev, VV
    Chu, PL
    Malomed, BA
    PHYSICAL REVIEW E, 1998, 57 (01) : 1088 - 1091