Collisions between discrete spatiotemporal Ginzburg-Landau solitons

被引:8
|
作者
Mihalache, D. [1 ]
Mazilu, D. [1 ]
Lederer, F. [2 ]
机构
[1] Horia Hulubei Natl Inst Phys & Nucl Engn IFIN HH, Magurele 077125, Romania
[2] Univ Jena, Inst Solid State Theory & Theoret Opt, D-07743 Jena, Germany
来源
关键词
BREATHING LOCALIZED SOLUTIONS; SURFACE SOLITONS; SOLITARY WAVES; ARRAYS; PROPAGATION; POLARITONS; EQUATION; COLLAPSE; FRONTS;
D O I
10.1140/epjst/e2009-01079-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We report systematic results of collisions between discrete spatiotemporal Ginzburg-Landau solitons in waveguide arrays. Depending on the value of the kick parameter (collision momentum), four generic outcomes are identified in the case of collision of two identical solitons located at equal distances from the edge of the waveguide array: (a) merger of the solitons into a single one, at small values of the kick parameter, (b) creation of an extra soliton at intermediate values of the collision momentum, (c) quasi-elastic interactions at both intermediate values of the kick parameter (for relatively small values of the cubic gain) and at large values of the kick parameter (for relatively high values of cubic gain), and (d) soliton spreading at relatively large values of the collision momentum but only in the case of relatively small values of the cubic gain. In the case of collision of two non-identical solitons located at different distances from the edge of the waveguide array four generic outcomes were identified too: (e) soliton bouncing, accompanied by a sharp modification of soliton velocities during the interaction process, for relatively small values of the collision momentum, (f) soliton creation at intermediate values of the kick parameter and for relatively low values of the cubic gain, (g) soliton spreading (in time) at intermediate values of the collision momentum and for relatively high values of the cubic gain, and (h) quasi-elastic interactions at large values of the the kick parameter.
引用
收藏
页码:267 / 279
页数:13
相关论文
共 50 条
  • [41] Optical solitons for complex Ginzburg-Landau model in nonlinear optics
    Inc, Mustafa
    Aliyu, Aliyu Isa
    Yusuf, Abdullahi
    Baleanu, Dumitru
    OPTIK, 2018, 158 : 368 - 375
  • [42] Optical solitons to the Ginzburg-Landau equation including the parabolic nonlinearity
    Hosseini, K.
    Mirzazadeh, M.
    Akinyemi, L.
    Baleanu, D.
    Salahshour, S.
    OPTICAL AND QUANTUM ELECTRONICS, 2022, 54 (10)
  • [43] SWEEPING ALGORITHMS FOR INVERTING THE DISCRETE GINZBURG-LANDAU OPERATOR
    KWONG, MK
    APPLIED MATHEMATICS AND COMPUTATION, 1993, 53 (2-3) : 129 - 150
  • [44] The Existence of Exponential Attractor for Discrete Ginzburg-Landau Equation
    Du, Guangyin
    Zhu, Zeqi
    Zhao, Caidi
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2015, 2015
  • [45] Finding equilibrium in the spatiotemporal chaos of the complex Ginzburg-Landau equation
    Ballard, Christopher C.
    Esty, C. Clark
    Egolf, David A.
    CHAOS, 2016, 26 (11)
  • [46] Synchronization of spatiotemporal chaos in coupled complex Ginzburg-Landau oscillators
    Gao, JH
    Zheng, ZG
    Jiang, LB
    Ruan, SC
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2003, 39 (04) : 429 - 432
  • [47] PATTERN SELECTION AND SPATIOTEMPORAL TRANSITION TO CHAOS IN THE GINZBURG-LANDAU EQUATION
    NOZAKI, K
    BEKKI, N
    PHYSICAL REVIEW LETTERS, 1983, 51 (24) : 2171 - 2174
  • [48] INELASTIC-COLLISIONS OF PULSES IN COUPLED GINZBURG-LANDAU EQUATIONS
    MALOMED, BA
    PHYSICA A, 1992, 188 (1-3): : 201 - 205
  • [49] ON THE GINZBURG-LANDAU EQUATIONS
    CARROLL, RW
    GLICK, AJ
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1964, 16 (05) : 373 - 384
  • [50] THE GINZBURG-LANDAU EQUATION
    ADOMIAN, G
    MEYERS, RE
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1995, 29 (03) : 3 - 4