On a variant of Pillai problem: integers as difference between generalized Pell numbers and perfect powers

被引:0
|
作者
Garcia, Jonathan [1 ]
Gomez, Carlos A. [1 ]
机构
[1] Univ Valle, Dept Matemat, Calle 13 100-00, Cali 25360, Colombia
关键词
Pillai's problem; k-Pell number; Linear forms in logarithms; Effective solution for exponential Diophantine equation; FIBONACCI NUMBERS; EQUATIONS; UNITS;
D O I
10.1007/s13398-022-01240-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The k-generalized Pell sequence P-(k) := (P-n((k)))(n >= -(k-2)) is the linear recurrence sequence of order k, whose first k terms are 0, ..., 0, 1 and satisfies the relation P-n((k)) = 2P(n-1)((k)) + 2P(n-2)((k)) + ... + P-n-k((k)), for all n, k >= 2. In this paper, we investigate about integers that have at least two representations as a difference between a k-Pell number and a perfect power. In order to exhibit a solution method when b is known, we find all the integers c that have at least two representations of the form P-n((k)) - b(m) for b is an element of [2, 10]. This paper extends the previous works in Ddamulira et al. (Proc. Math. Sci. 127: 411-421, 2017) and Erazo et al. (J. Number Theory 203: 294-309, 2019).
引用
收藏
页数:36
相关论文
共 46 条
  • [1] On a variant of Pillai problem: integers as difference between generalized Pell numbers and perfect powers
    Jonathan García
    Carlos A. Gómez
    [J]. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2022, 116
  • [2] On the problem of pillai with Pell numbers, Pell-Lucas numbers and powers of 3
    Faye, Bernadette
    Edjeou, Bilizimbeye
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2023, 19 (01) : 71 - 92
  • [3] k-Generalized Lucas numbers, perfect powers and the problem of Pillai
    Faye, Bernadette
    Garcia, Jonathan
    Gomez, Carlos A.
    [J]. MONATSHEFTE FUR MATHEMATIK, 2024, 204 (04): : 839 - 885
  • [4] On a problem of Pillai with k–generalized Fibonacci numbers and powers of 2
    Mahadi Ddamulira
    Carlos A. Gómez
    Florian Luca
    [J]. Monatshefte für Mathematik, 2018, 187 : 635 - 664
  • [5] On the problem of Pillai with k-generalized Fibonacci numbers and powers of 3
    Ddamulira, Mahadi
    Luca, Florian
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2020, 16 (07) : 1643 - 1666
  • [6] On a problem of Pillai with k-generalized Fibonacci numbers and powers of 2
    Ddamulira, Mahadi
    Gomez, Carlos A.
    Luca, Florian
    [J]. MONATSHEFTE FUR MATHEMATIK, 2018, 187 (04): : 635 - 664
  • [7] On perfect powers that are sums of two Pell numbers
    Aboudja, Hyacinthe
    Hernane, Mohand
    Rihane, Salah Eddine
    Togbe, Main
    [J]. PERIODICA MATHEMATICA HUNGARICA, 2021, 82 (01) : 11 - 15
  • [8] On perfect powers that are sums of two Pell numbers
    Hyacinthe Aboudja
    Mohand Hernane
    Salah Eddine Rihane
    Alain Togbé
    [J]. Periodica Mathematica Hungarica, 2021, 82 : 11 - 15
  • [9] AN APPROACH TO PILLAI'S PROBLEM WITH THE PELL SEQUENCE AND THE POWERS OF 3
    Cagman, Abdullah
    [J]. MISKOLC MATHEMATICAL NOTES, 2021, 22 (02) : 599 - 610
  • [10] On a problem of Pillai with Fibonacci numbers and powers of 3
    Ddamulira, Mahadi
    [J]. BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2020, 26 (02): : 263 - 277