k-Generalized Lucas numbers, perfect powers and the problem of Pillai

被引:0
|
作者
Faye, Bernadette [1 ]
Garcia, Jonathan [2 ]
Gomez, Carlos A. [3 ,4 ]
机构
[1] Univ Alioune Diop Bambey, Dept Math, UFR SATIC, BP 34, Diourbel, Senegal
[2] Univ Vienna, Fac Math, Kolingasse 14-16, A-1090 Vienna, Austria
[3] Univ Valle, Dept Matemat, Calle 13 100-00, Cali, Colombia
[4] Res Grp ALTENUA Algebra Teoria Numeros & Aplicac, Colciencias Code COL0017217, Cali, Colombia
来源
MONATSHEFTE FUR MATHEMATIK | 2024年 / 204卷 / 04期
关键词
Diophantine equations; Lucas sequence; Pillai's Problem; REPDIGITS;
D O I
10.1007/s00605-024-01981-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For an integer k >= 2, let L ((k)), let be the k-generalized Lucas sequence which starts with 0,..., 2, 1 (a total of k terms) and for which each term afterwards is the sum of the k preceding terms. In this paper we assume that an integer c can be represented in at least two ways as the difference between a k-generalized Lucas number and a power of b, then using the theory of nonzero linear forms in logarithms of algebraic numbers, we bound all possible solutions on this representation of c in terms of b. Finally, combination our general result and some known reduction procedures based on the continued fraction algorithm, we find all the integers c and their representations for b is an element of [2, 10], this argument can be generalized to any b > 10.
引用
收藏
页码:839 / 885
页数:47
相关论文
共 50 条
  • [1] On the problem of Pillai with k-generalized Fibonacci numbers and powers of 3
    Ddamulira, Mahadi
    Luca, Florian
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2020, 16 (07) : 1643 - 1666
  • [2] On a problem of Pillai with k-generalized Fibonacci numbers and powers of 2
    Ddamulira, Mahadi
    Gomez, Carlos A.
    Luca, Florian
    [J]. MONATSHEFTE FUR MATHEMATIK, 2018, 187 (04): : 635 - 664
  • [3] On Perfect Powers in k-Generalized Pell-Lucas Sequence
    Siar, Z.
    Keskin, R.
    [J]. MATHEMATICAL NOTES, 2023, 114 (5-6) : 936 - 948
  • [4] On a problem of Pillai with k–generalized Fibonacci numbers and powers of 2
    Mahadi Ddamulira
    Carlos A. Gómez
    Florian Luca
    [J]. Monatshefte für Mathematik, 2018, 187 : 635 - 664
  • [5] On the representation of k-generalized Fibonacci and Lucas numbers
    Öcal, AA
    Tuglu, N
    Altinisik, E
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2005, 170 (01) : 584 - 596
  • [6] ON PERFECT POWERS IN k-GENERALIZED PELL SEQUENCE
    Siar, Zafer
    Keskin, Refik
    Oztas, Elif Segah
    [J]. MATHEMATICA BOHEMICA, 2023, 148 (04): : 507 - 518
  • [7] On a variant of Pillai problem: integers as difference between generalized Pell numbers and perfect powers
    Garcia, Jonathan
    Gomez, Carlos A.
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2022, 116 (03)
  • [8] On a variant of Pillai problem: integers as difference between generalized Pell numbers and perfect powers
    Jonathan García
    Carlos A. Gómez
    [J]. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2022, 116
  • [9] On the problem of pillai with Pell numbers, Pell-Lucas numbers and powers of 3
    Faye, Bernadette
    Edjeou, Bilizimbeye
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2023, 19 (01) : 71 - 92
  • [10] On the largest prime factor of the k-generalized Lucas numbers
    Batte, Herbert
    Luca, Florian
    [J]. BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2024, 30 (02):