On the problem of pillai with Pell numbers, Pell-Lucas numbers and powers of 3

被引:0
|
作者
Faye, Bernadette [1 ]
Edjeou, Bilizimbeye [1 ]
机构
[1] Univ Gaston Berger St Louis, Sect Math Appl, UFR Sci & Technol, BP 234, St Louis, Senegal
关键词
Diophantine equations; Lucas sequence; Pell equation; FIBONACCI NUMBERS; LOGARITHMS; UNITS;
D O I
10.1142/S1793042123500045
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let {Pn}(n >= 0) be the sequence of Pell numbers defined by P-0 = 0, P-1 = 1 and Pn+2 = 2P(n+1) + P-n for all n >= 0 and let {Q(n)}(n >= 0) be its companion sequence, the Pell-Lucas numbers defined by Q(0) = Q(1) = 2 and Q(n+2) = 2Q(n+1) + Q(n) for all n >= 0. In this paper, we find all integers c admitting at least two representations as a difference between a Pell number or a Pell-Lucas number and a power of 3.
引用
收藏
页码:71 / 92
页数:22
相关论文
共 50 条
  • [1] PERFECT PELL AND PELL-LUCAS NUMBERS
    Bravo, Jhon J.
    Luca, Florian
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2019, 56 (04) : 381 - 387
  • [2] On Pell, Pell-Lucas, and balancing numbers
    Gül Karadeniz Gözeri
    Journal of Inequalities and Applications, 2018
  • [3] On Generalized Pell and Pell-Lucas Numbers
    Trojnar-Spelina, Lucyna
    Wloch, Iwona
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2019, 43 (A6): : 2871 - 2877
  • [4] On Pell, Pell-Lucas, and balancing numbers
    Gozeri, Gul Karadeniz
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [5] Pell and Pell-Lucas numbers with applications
    Hajnal, Peter
    ACTA SCIENTIARUM MATHEMATICARUM, 2016, 82 (3-4): : 695 - 696
  • [6] Pell numbers, Pell-Lucas numbers and modular group
    Mushtaq, Q.
    Hayat, U.
    ALGEBRA COLLOQUIUM, 2007, 14 (01) : 97 - 102
  • [7] Convolution summations for Pell and Pell-Lucas numbers
    Horadam, AF
    FIBONACCI QUARTERLY, 2000, 38 (05): : 451 - 457
  • [8] Convolutions of the Generalized Pell and Pell-Lucas Numbers
    Djordjevic, Gospava B.
    FILOMAT, 2016, 30 (01) : 105 - 112
  • [9] A NOTE ON BIGAUSSIAN PELL AND PELL-LUCAS NUMBERS
    Gokbas, Hasan
    JOURNAL OF SCIENCE AND ARTS, 2021, (03): : 669 - 680
  • [10] New recurrences on Pell numbers, Pell-Lucas numbers, Jacobsthal numbers, and Jacobsthal-Lucas numbers
    Celik, Songul
    Durukan, Inan
    Ozkan, Engin
    CHAOS SOLITONS & FRACTALS, 2021, 150