On the problem of pillai with Pell numbers, Pell-Lucas numbers and powers of 3

被引:0
|
作者
Faye, Bernadette [1 ]
Edjeou, Bilizimbeye [1 ]
机构
[1] Univ Gaston Berger St Louis, Sect Math Appl, UFR Sci & Technol, BP 234, St Louis, Senegal
关键词
Diophantine equations; Lucas sequence; Pell equation; FIBONACCI NUMBERS; LOGARITHMS; UNITS;
D O I
10.1142/S1793042123500045
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let {Pn}(n >= 0) be the sequence of Pell numbers defined by P-0 = 0, P-1 = 1 and Pn+2 = 2P(n+1) + P-n for all n >= 0 and let {Q(n)}(n >= 0) be its companion sequence, the Pell-Lucas numbers defined by Q(0) = Q(1) = 2 and Q(n+2) = 2Q(n+1) + Q(n) for all n >= 0. In this paper, we find all integers c admitting at least two representations as a difference between a Pell number or a Pell-Lucas number and a power of 3.
引用
收藏
页码:71 / 92
页数:22
相关论文
共 50 条
  • [21] PELL AND PELL-LUCAS NUMBERS AS SUMS OF THREE REPDIGITS
    Adegbindin, C. A.
    Luca, F.
    Togbe, A.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2021, 90 (01): : 7 - 25
  • [22] Pell and Pell-Lucas numbers as difference of two repdigits
    Edjeou, Bilizimbeye
    Faye, Bernadette
    AFRIKA MATEMATIKA, 2023, 34 (04)
  • [23] REPDIGITS AS DIFFERENCE OF TWO PELL OR PELL-LUCAS NUMBERS
    Erduvan, Fatih
    Keskin, Refik
    KOREAN JOURNAL OF MATHEMATICS, 2023, 31 (01): : 63 - 73
  • [24] Repdigits base b as products of two Pell numbers or Pell-Lucas numbers
    Erduvan, Fatih
    Keskin, Refik
    Siar, Zafer
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2021, 27 (03):
  • [25] Pell and Pell-Lucas numbers with only one distinct digit
    Faye, Bernadette
    Luca, Florian
    ANNALES MATHEMATICAE ET INFORMATICAE, 2015, 45 : 55 - 60
  • [26] The Pell and Pell-Lucas Numbers via Square Roots of Matrices
    Arslan, Saadet
    Koken, Fikri
    JOURNAL OF INFORMATICS AND MATHEMATICAL SCIENCES, 2016, 8 (03): : 159 - 166
  • [27] Pell and Pell-Lucas numbers which are concatenations of three repdigits
    Erduvan, Fatih
    Duman, Merve Guney
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024,
  • [28] A New Generalization of Pell-Lucas Numbers ( Bi-Periodic Pell-Lucas Sequence)
    Uygun, Sukran
    Karatas, Hasan
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2019, 10 (03): : 469 - 479
  • [29] PELL AND PELL-LUCAS NUMBERS WHICH ARE CONCATENATIONS OF TWO REPDIGITS
    Duman, Merve Guney
    Erduvan, Fatih
    HONAM MATHEMATICAL JOURNAL, 2023, 45 (04): : 572 - 584
  • [30] The Binet formulas for the Pell and Pell-Lucas p-numbers
    Kocer, E. Gokcen
    Tuglu, Naim
    ARS COMBINATORIA, 2007, 85 : 3 - 17