On a problem of Pillai with k-generalized Fibonacci numbers and powers of 2

被引:16
|
作者
Ddamulira, Mahadi [1 ]
Gomez, Carlos A. [2 ]
Luca, Florian [3 ,4 ,5 ]
机构
[1] Graz Univ Technol, Inst Anal & Number Theory, Kopernikusgasse 24-2, A-8010 Graz, Austria
[2] Univ Valle, Dept Matemat, Calle 13 100-00, Cali, Colombia
[3] Univ Witwatersrand, Sch Math, Private Bag X3, ZA-2050 Johannesburg, Johannesberg, South Africa
[4] Max Planck Inst Math, Vivatsgasse 7, D-53111 Bonn, Germany
[5] Univ Ostrava, Dept Math, Fac Sci, 30 Dubna 22, CZ-70103 Ostrava, Czech Republic
来源
MONATSHEFTE FUR MATHEMATIK | 2018年 / 187卷 / 04期
基金
奥地利科学基金会;
关键词
Diophantine equations; Pillai's problem; Generalized Fibonacci sequence; Reduction method;
D O I
10.1007/s00605-018-1155-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For an integer k = 2, let {F ( k) n} n= 0 be the k-generalized Fibonacci sequence which starts with 0,..., 0,1 ( k terms) and each term afterwards is the sum of the k preceding terms. In this paper, we find all integers c having at least two representations as a difference between a k-generalized Fibonacci number and a power of 2 for any fixed k = 4. This paper extends previous work from Ddamulira et al. ( Proc Math Sci 127( 3): 411-421, 2017. https:// doi. org/ 10.1007/ s12044-017-0338-3) for the case k = 2 and Bravo et al. ( Bull Korean Math Soc 54( 3): 069-1080, 2017. https:// doi. org/ 10.4134/ BKMS. b160486) for the case k = 3.
引用
收藏
页码:635 / 664
页数:30
相关论文
共 50 条
  • [1] On the problem of Pillai with k-generalized Fibonacci numbers and powers of 3
    Ddamulira, Mahadi
    Luca, Florian
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2020, 16 (07) : 1643 - 1666
  • [2] On a problem of Pillai with k–generalized Fibonacci numbers and powers of 2
    Mahadi Ddamulira
    Carlos A. Gómez
    Florian Luca
    [J]. Monatshefte für Mathematik, 2018, 187 : 635 - 664
  • [3] k-Generalized Lucas numbers, perfect powers and the problem of Pillai
    Faye, Bernadette
    Garcia, Jonathan
    Gomez, Carlos A.
    [J]. MONATSHEFTE FUR MATHEMATIK, 2024, 204 (04): : 839 - 885
  • [4] On a problem of Pillai with Fibonacci numbers and powers of 2
    Ddamulira, Mahadi
    Luca, Florian
    Rakotomalala, Mihaja
    [J]. PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2017, 127 (03): : 411 - 421
  • [5] On a problem of Pillai with Fibonacci numbers and powers of 2
    MAHADI DDAMULIRA
    FLORIAN LUCA
    MIHAJA RAKOTOMALALA
    [J]. Proceedings - Mathematical Sciences, 2017, 127 : 411 - 421
  • [6] On a problem of Pillai with Fibonacci numbers and powers of 3
    Ddamulira, Mahadi
    [J]. BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2020, 26 (02): : 263 - 277
  • [7] On a problem of Pillai with Fibonacci numbers and powers of 3
    Mahadi Ddamulira
    [J]. Boletín de la Sociedad Matemática Mexicana, 2020, 26 : 263 - 277
  • [8] Generalized Heisenberg algebras and k-generalized Fibonacci numbers
    Schork, Matthias
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (15) : 4207 - 4214
  • [9] On the representation of k-generalized Fibonacci and Lucas numbers
    Öcal, AA
    Tuglu, N
    Altinisik, E
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2005, 170 (01) : 584 - 596
  • [10] On the sum of the reciprocals of k-generalized Fibonacci numbers
    Alahmadi, Adel
    Luca, Florian
    [J]. ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2022, 30 (01): : 31 - 42