On a problem of Pillai with k–generalized Fibonacci numbers and powers of 2

被引:0
|
作者
Mahadi Ddamulira
Carlos A. Gómez
Florian Luca
机构
[1] Graz University of Technology,Institute of Analysis and Number Theory
[2] Universidad del Valle,Departamento de Matemáticas
[3] University of the Witwatersrand,School of Mathematics
[4] Max Planck Institute for Mathematics,Department of Mathematics, Faculty of Sciences
[5] University of Ostrava,undefined
来源
关键词
Diophantine equations; Pillai’s problem; Generalized Fibonacci sequence; Reduction method; 11D61; 11B39; 11D45; 11J86;
D O I
暂无
中图分类号
学科分类号
摘要
For an integer k≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ k \ge 2 $$\end{document}, let {Fn(k)}n≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \{F^{(k)}_{n} \}_{n\ge 0}$$\end{document} be the k–generalized Fibonacci sequence which starts with 0,…,0,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ 0, \ldots , 0, 1 $$\end{document} (k terms) and each term afterwards is the sum of the k preceding terms. In this paper, we find all integers c having at least two representations as a difference between a k–generalized Fibonacci number and a power of 2 for any fixed k≥4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \ge 4$$\end{document}. This paper extends previous work from Ddamulira et al. (Proc Math Sci 127(3): 411–421, 2017. https://doi.org/10.1007/s12044-017-0338-3) for the case k=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=2$$\end{document} and Bravo et al. (Bull Korean Math Soc 54(3): 069–1080, 2017. https://doi.org/10.4134/BKMS.b160486) for the case k=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=3$$\end{document}.
引用
收藏
页码:635 / 664
页数:29
相关论文
共 50 条
  • [1] On a problem of Pillai with k-generalized Fibonacci numbers and powers of 2
    Ddamulira, Mahadi
    Gomez, Carlos A.
    Luca, Florian
    [J]. MONATSHEFTE FUR MATHEMATIK, 2018, 187 (04): : 635 - 664
  • [2] On the problem of Pillai with k-generalized Fibonacci numbers and powers of 3
    Ddamulira, Mahadi
    Luca, Florian
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2020, 16 (07) : 1643 - 1666
  • [3] On a problem of Pillai with Fibonacci numbers and powers of 2
    Ddamulira, Mahadi
    Luca, Florian
    Rakotomalala, Mihaja
    [J]. PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2017, 127 (03): : 411 - 421
  • [4] On a problem of Pillai with Fibonacci numbers and powers of 2
    MAHADI DDAMULIRA
    FLORIAN LUCA
    MIHAJA RAKOTOMALALA
    [J]. Proceedings - Mathematical Sciences, 2017, 127 : 411 - 421
  • [5] On a problem of Pillai with Fibonacci numbers and powers of 3
    Ddamulira, Mahadi
    [J]. BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2020, 26 (02): : 263 - 277
  • [6] On a problem of Pillai with Fibonacci numbers and powers of 3
    Mahadi Ddamulira
    [J]. Boletín de la Sociedad Matemática Mexicana, 2020, 26 : 263 - 277
  • [7] k-Generalized Lucas numbers, perfect powers and the problem of Pillai
    Faye, Bernadette
    Garcia, Jonathan
    Gomez, Carlos A.
    [J]. MONATSHEFTE FUR MATHEMATIK, 2024, 204 (04): : 839 - 885
  • [8] ON THE MULTIPLICITY IN PILLAI'S PROBLEM WITH FIBONACCI NUMBERS AND POWERS OF A FIXED PRIME
    Batte, Herbert
    Ddamulira, Mahadi
    Kasozi, Juma
    Luca, Florian
    [J]. GLASNIK MATEMATICKI, 2022, 57 (02) : 185 - 201
  • [9] Pillai's problem with k-Fibonacci and Pell numbers
    Bravo, Jhon J.
    Diaz, Maribel
    Gomez, Carlos A.
    [J]. JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2021, 27 (10) : 1434 - 1455
  • [10] ON PILLAI'S PROBLEM WITH TRIBONACCI NUMBERS AND POWERS OF 2
    Bravo, Jhon J.
    Luca, Florian
    Yazan, Karina
    [J]. BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2017, 54 (03) : 1069 - 1080