Eigenvalue statistics for product complex Wishart matrices

被引:45
|
作者
Forrester, Peter J. [1 ]
机构
[1] Univ Melbourne, Dept Math & Stat, Melbourne, Vic 3010, Australia
基金
澳大利亚研究理事会;
关键词
random matrices; determinantal point processes; Meijer G-function; SINGULAR-VALUES; ENSEMBLES;
D O I
10.1088/1751-8113/47/34/345202
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The eigenvalue statistics for complex N x N Wishart matrices X-r(dagger), X-s(r, s), where X-r,X- s is equal to the product of r complex Gaussian matrices, and the inverse of s complex Gaussian matrices, are considered. In the case r = s the exact form of the global density is computed. The averaged characteristic polynomial for the corresponding generalized eigenvalue problem is calculated in terms of a particular generalized hypergeometric function F-s+1(r). For finite N the eigenvalue probability density function is computed, and is shown to be an example of a biorthogonal ensemble. A double contour integral form of the corresponding correlation kernel is derived, which allows the hard edge scaled limit to be computed. The limiting kernel is given in terms of certain Meijer G-functions, and is identical to that found in the recent work of Kuijlaars and Zhang in the case s = 0. Properties of the kernel and corresponding correlation functions are discussed.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Eigenvalue statistics for the sum of two complex Wishart matrices
    Kumar, Santosh
    [J]. EPL, 2014, 107 (06)
  • [2] On the Scaled Eigenvalue Distributions of Complex Wishart Matrices
    Wensheng Zhang
    Hailiang Xiong
    Deqiang Wang
    Di Chen
    [J]. Wireless Personal Communications, 2017, 95 : 4257 - 4267
  • [3] On the Scaled Eigenvalue Distributions of Complex Wishart Matrices
    Zhang, Wensheng
    Xiong, Hailiang
    Wang, Deqiang
    Chen, Di
    [J]. WIRELESS PERSONAL COMMUNICATIONS, 2017, 95 (04) : 4257 - 4267
  • [4] Largest eigenvalue statistics of double-correlated complex Wishart matrices and MIMO-MRC
    McKay, Matthew R.
    Grant, Alex J.
    Collings, Iain B.
    [J]. 2006 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-13, 2006, : 3671 - 3674
  • [5] COMPUTING THE LARGEST EIGENVALUE DISTRIBUTION FOR COMPLEX WISHART MATRICES
    Jones, Scott R.
    Howard, Stephen D.
    Clarkson, I. Vaughan L.
    Bialkowski, Konstanty S.
    Cochran, Douglas
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, : 3439 - 3443
  • [6] Eigenvalue density of correlated complex random Wishart matrices
    Simon, SH
    Moustakas, AL
    [J]. PHYSICAL REVIEW E, 2004, 69 (06):
  • [7] Eigenvalue Densities of Real and Complex Wishart Correlation Matrices
    Recher, Christian
    Kieburg, Mario
    Guhr, Thomas
    [J]. PHYSICAL REVIEW LETTERS, 2010, 105 (24)
  • [8] Eigenvalue density of correlated complex random Wishart matrices
    Simon, Steven H.
    Moustakas, Aris L.
    [J]. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2004, 69 (6 2): : 065101 - 1
  • [9] ON THE DISTRIBUTION OF THE lth LARGEST EIGENVALUE OF SPIKED COMPLEX WISHART MATRICES
    Zanella, Alberto
    Chiani, Marco
    [J]. ACTA PHYSICA POLONICA B, 2020, 51 (07): : 1687 - 1705
  • [10] Distribution of the Ratio of the Largest Eigenvalue to the Trace of Complex Wishart Matrices
    Kortun, Ayse
    Sellathurai, Mathini
    Ratnarajah, Tharm
    Zhong, Caijun
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (10) : 5527 - 5532