Eigenvalue statistics for the sum of two complex Wishart matrices

被引:17
|
作者
Kumar, Santosh [1 ]
机构
[1] Shiv Nadar Univ, Dept Phys, Gautam Buddha Nagar 201314, Uttar Pradesh, India
关键词
DIRAC OPERATOR; CONDUCTANCE;
D O I
10.1209/0295-5075/107/60002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The sum of independent Wishart matrices, taken from distributions with unequal covariance matrices, plays a crucial role in multivariate statistics, and has applications in the fields of quantitative finance and telecommunication. However, analytical results concerning the corresponding eigenvalue statistics have remained unavailable, even for the sum of two Wishart matrices. This can be attributed to the complicated and rotationally noninvariant nature of the matrix distribution that makes extracting the information about eigenvalues a nontrivial task. Using a generalization of the Harish-Chandra-Itzykson-Zuber integral, we find exact solution to this problem for the complex Wishart case when one of the covariance matrices is proportional to the identity matrix, while the other is arbitrary. We derive exact and compact expressions for the joint probability density and marginal density of eigenvalues. The analytical results are compared with numerical simulations and we find perfect agreement.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Eigenvalue statistics for product complex Wishart matrices
    Forrester, Peter J.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (34)
  • [2] On the Scaled Eigenvalue Distributions of Complex Wishart Matrices
    Wensheng Zhang
    Hailiang Xiong
    Deqiang Wang
    Di Chen
    [J]. Wireless Personal Communications, 2017, 95 : 4257 - 4267
  • [3] On the Scaled Eigenvalue Distributions of Complex Wishart Matrices
    Zhang, Wensheng
    Xiong, Hailiang
    Wang, Deqiang
    Chen, Di
    [J]. WIRELESS PERSONAL COMMUNICATIONS, 2017, 95 (04) : 4257 - 4267
  • [4] Largest eigenvalue statistics of double-correlated complex Wishart matrices and MIMO-MRC
    McKay, Matthew R.
    Grant, Alex J.
    Collings, Iain B.
    [J]. 2006 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-13, 2006, : 3671 - 3674
  • [5] COMPUTING THE LARGEST EIGENVALUE DISTRIBUTION FOR COMPLEX WISHART MATRICES
    Jones, Scott R.
    Howard, Stephen D.
    Clarkson, I. Vaughan L.
    Bialkowski, Konstanty S.
    Cochran, Douglas
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, : 3439 - 3443
  • [6] Eigenvalue density of correlated complex random Wishart matrices
    Simon, SH
    Moustakas, AL
    [J]. PHYSICAL REVIEW E, 2004, 69 (06):
  • [7] Eigenvalue Densities of Real and Complex Wishart Correlation Matrices
    Recher, Christian
    Kieburg, Mario
    Guhr, Thomas
    [J]. PHYSICAL REVIEW LETTERS, 2010, 105 (24)
  • [8] Eigenvalue density of correlated complex random Wishart matrices
    Simon, Steven H.
    Moustakas, Aris L.
    [J]. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2004, 69 (6 2): : 065101 - 1
  • [9] Spectral statistics for the difference of two Wishart matrices
    Kumar, Santosh
    Charan, S. Sai
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (50)
  • [10] ON THE DISTRIBUTION OF THE lth LARGEST EIGENVALUE OF SPIKED COMPLEX WISHART MATRICES
    Zanella, Alberto
    Chiani, Marco
    [J]. ACTA PHYSICA POLONICA B, 2020, 51 (07): : 1687 - 1705