Eigenvalue statistics for product complex Wishart matrices

被引:45
|
作者
Forrester, Peter J. [1 ]
机构
[1] Univ Melbourne, Dept Math & Stat, Melbourne, Vic 3010, Australia
基金
澳大利亚研究理事会;
关键词
random matrices; determinantal point processes; Meijer G-function; SINGULAR-VALUES; ENSEMBLES;
D O I
10.1088/1751-8113/47/34/345202
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The eigenvalue statistics for complex N x N Wishart matrices X-r(dagger), X-s(r, s), where X-r,X- s is equal to the product of r complex Gaussian matrices, and the inverse of s complex Gaussian matrices, are considered. In the case r = s the exact form of the global density is computed. The averaged characteristic polynomial for the corresponding generalized eigenvalue problem is calculated in terms of a particular generalized hypergeometric function F-s+1(r). For finite N the eigenvalue probability density function is computed, and is shown to be an example of a biorthogonal ensemble. A double contour integral form of the corresponding correlation kernel is derived, which allows the hard edge scaled limit to be computed. The limiting kernel is given in terms of certain Meijer G-functions, and is identical to that found in the recent work of Kuijlaars and Zhang in the case s = 0. Properties of the kernel and corresponding correlation functions are discussed.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] Measuring maximal eigenvalue distribution of Wishart random matrices with coupled lasers
    Fridman, Moti
    Pugatch, Rami
    Nixon, Micha
    Friesem, Asher A.
    Davidson, Nir
    [J]. PHYSICAL REVIEW E, 2012, 85 (02):
  • [42] On the Condition Number Distribution of Complex Wishart Matrices
    Matthaiou, Michail
    McKay, Matthew R.
    Smith, Peter J.
    Nossek, Josef A.
    [J]. IEEE TRANSACTIONS ON COMMUNICATIONS, 2010, 58 (06) : 1705 - 1717
  • [43] Noncentral Wishart matrices, asymptotic normality of vec and smooth statistics
    Nunes, Celia
    Ferreira, Dario
    Ferreira, Sandra S. S.
    Fonseca, Miguel
    Oliveira, Manuela M. M.
    Mexia, Joao T.
    [J]. STATISTICS, 2023, 57 (02) : 261 - 281
  • [44] Joint and marginal eigenvalue distributions of (Non)Central complex wishart matrices and PDF-Based approach for characterizing the capacity statistics of MIMO ricean and Rayleigh fading channels
    Maaref, Amine
    Aissa, Sonia
    [J]. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2007, 6 (10) : 3607 - 3619
  • [45] EIGENVALUE LOCALIZATION FOR COMPLEX MATRICES
    Gumus, Ibrahim Halil
    Hirzallah, Omar
    Kittaneh, Fuad
    [J]. ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2014, 27 : 892 - 906
  • [46] Central Limit Theorem for Linear Eigenvalue Statistics for a Tensor Product Version of Sample Covariance Matrices
    A. Lytova
    [J]. Journal of Theoretical Probability, 2018, 31 : 1024 - 1057
  • [47] Eigenvalue statistics for generalized symmetric and Hermitian matrices
    Das, Adway Kumar
    Ghosh, Anandamohan
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2019, 52 (39)
  • [48] Universal eigenvalue statistics for dynamically defined matrices
    Adhikari, Arka
    Lemm, Marius
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 2024, 153 (01): : 169 - 218
  • [49] Random matrices: Universality of local eigenvalue statistics
    Tao, Terence
    Vu, Van
    [J]. ACTA MATHEMATICA, 2011, 206 (01) : 127 - 204
  • [50] Central Limit Theorem for Linear Eigenvalue Statistics for a Tensor Product Version of Sample Covariance Matrices
    Lytova, A.
    [J]. JOURNAL OF THEORETICAL PROBABILITY, 2018, 31 (02) : 1024 - 1057