Eigenvalue statistics for product complex Wishart matrices

被引:45
|
作者
Forrester, Peter J. [1 ]
机构
[1] Univ Melbourne, Dept Math & Stat, Melbourne, Vic 3010, Australia
基金
澳大利亚研究理事会;
关键词
random matrices; determinantal point processes; Meijer G-function; SINGULAR-VALUES; ENSEMBLES;
D O I
10.1088/1751-8113/47/34/345202
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The eigenvalue statistics for complex N x N Wishart matrices X-r(dagger), X-s(r, s), where X-r,X- s is equal to the product of r complex Gaussian matrices, and the inverse of s complex Gaussian matrices, are considered. In the case r = s the exact form of the global density is computed. The averaged characteristic polynomial for the corresponding generalized eigenvalue problem is calculated in terms of a particular generalized hypergeometric function F-s+1(r). For finite N the eigenvalue probability density function is computed, and is shown to be an example of a biorthogonal ensemble. A double contour integral form of the corresponding correlation kernel is derived, which allows the hard edge scaled limit to be computed. The limiting kernel is given in terms of certain Meijer G-functions, and is identical to that found in the recent work of Kuijlaars and Zhang in the case s = 0. Properties of the kernel and corresponding correlation functions are discussed.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Polynomial Expression for Distribution of the Smallest Eigenvalue of Wishart Matrices
    Zhang, Haochuan
    Niu, Fangfang
    Yang, Hongwen
    Zhang, Xin
    Yang, Dacheng
    [J]. 68TH IEEE VEHICULAR TECHNOLOGY CONFERENCE, FALL 2008, 2008, : 466 - 469
  • [22] Asymptotic Eigenvalue Density for the Quotient Ensemble of Wishart Matrices
    Kumar, Santosh
    Pivaro, Gabriel F.
    Yerrababu, Yogeesh R.
    Fraidenraich, Gustavo
    Guimaraes, Dayan A.
    de Souza, Rausley A. A.
    [J]. IEEE COMMUNICATIONS LETTERS, 2018, 22 (12) : 2575 - 2578
  • [24] Calculation of moments of complex Wishart and complex inverse Wishart distributed matrices
    Maiwald, D
    Kraus, D
    [J]. IEE PROCEEDINGS-RADAR SONAR AND NAVIGATION, 2000, 147 (04) : 162 - 168
  • [25] Spectral statistics for the difference of two Wishart matrices
    Kumar, Santosh
    Charan, S. Sai
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (50)
  • [26] The largest eigenvalue characteristic of correlated complex Wishart matrices and its application to MIMO MRC systems
    Rui, Xianyi
    Hong, Rong
    Geng, Junping
    Huang, Xiaojing
    [J]. 2007 INTERNATIONAL SYMPOSIUM ON COMMUNICATIONS AND INFORMATION TECHNOLOGIES, VOLS 1-3, 2007, : 375 - +
  • [27] Simple and exact extreme eigenvalue distributions of finite Wishart matrices
    Zhang, Wensheng
    Zheltov, Pavel
    Abreu, Giuseppe
    [J]. IET COMMUNICATIONS, 2015, 9 (07) : 990 - 998
  • [28] Asymptotic Eigenvalue Distributions of Block-Transposed Wishart Matrices
    Teodor Banica
    Ion Nechita
    [J]. Journal of Theoretical Probability, 2013, 26 : 855 - 869
  • [29] Extreme Eigenvalue Distributions of Gamma-Wishart Random Matrices
    Dharmawansa, Prathapasinghe
    McKay, Matthew R.
    [J]. 2011 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2011,
  • [30] Asymptotic Eigenvalue Distributions of Block-Transposed Wishart Matrices
    Banica, Teodor
    Nechita, Ion
    [J]. JOURNAL OF THEORETICAL PROBABILITY, 2013, 26 (03) : 855 - 869