Eigenvalue statistics for product complex Wishart matrices

被引:45
|
作者
Forrester, Peter J. [1 ]
机构
[1] Univ Melbourne, Dept Math & Stat, Melbourne, Vic 3010, Australia
基金
澳大利亚研究理事会;
关键词
random matrices; determinantal point processes; Meijer G-function; SINGULAR-VALUES; ENSEMBLES;
D O I
10.1088/1751-8113/47/34/345202
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The eigenvalue statistics for complex N x N Wishart matrices X-r(dagger), X-s(r, s), where X-r,X- s is equal to the product of r complex Gaussian matrices, and the inverse of s complex Gaussian matrices, are considered. In the case r = s the exact form of the global density is computed. The averaged characteristic polynomial for the corresponding generalized eigenvalue problem is calculated in terms of a particular generalized hypergeometric function F-s+1(r). For finite N the eigenvalue probability density function is computed, and is shown to be an example of a biorthogonal ensemble. A double contour integral form of the corresponding correlation kernel is derived, which allows the hard edge scaled limit to be computed. The limiting kernel is given in terms of certain Meijer G-functions, and is identical to that found in the recent work of Kuijlaars and Zhang in the case s = 0. Properties of the kernel and corresponding correlation functions are discussed.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] On the largest-eigenvalue process for generalized Wishart random matrices
    Dieker, A. B.
    Warren, J.
    [J]. ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2009, 6 : 369 - 376
  • [32] Complex singular Wishart matrices and applications
    Ratnarajah, T
    Vaillancourt, R
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 50 (3-4) : 399 - 411
  • [33] Large Deviations of the Maximum Eigenvalue for Wishart and Gaussian Random Matrices
    Majumdar, Satya N.
    Vergassola, Massimo
    [J]. PHYSICAL REVIEW LETTERS, 2009, 102 (06)
  • [34] MIMO multichannel beamforming: SER and outage using new eigenvalue distributions of complex noncentral Wishart matrices
    Jin, Shi
    Mckay, Matthew R.
    Gao, Xiqi
    Collings, Iain B.
    [J]. IEEE TRANSACTIONS ON COMMUNICATIONS, 2008, 56 (03) : 424 - 434
  • [35] EIGENVALUE STATISTICS OF RANDOM REAL MATRICES
    LEHMANN, N
    SOMMERS, HJ
    [J]. PHYSICAL REVIEW LETTERS, 1991, 67 (08) : 941 - 944
  • [36] Linear eigenvalue statistics of XX′ matrices
    Kumar, A. S. Kiran
    Maurya, Shambhu Nath
    Saha, Koushik
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2023, 64 (12)
  • [37] MESOSCOPIC EIGENVALUE STATISTICS OF WIGNER MATRICES
    He, Yukun
    Knowles, Antti
    [J]. ANNALS OF APPLIED PROBABILITY, 2017, 27 (03): : 1510 - 1550
  • [38] EIGENVALUE STATISTICS OF DISTORTED RANDOM MATRICES
    CHEON, T
    [J]. PHYSICAL REVIEW LETTERS, 1990, 65 (05) : 529 - 532
  • [39] COMPUTING THE LARGEST EIGENVALUE DISTRIBUTION FOR NON-CENTRAL WISHART MATRICES
    Jones, Scott R.
    Cochran, Douglas
    Howard, Stephen D.
    Clarkson, I. Vaughan L.
    Bialkowski, Konstanty S.
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 4290 - 4294
  • [40] Replica method for eigenvalues of real Wishart product matrices
    Zavatone-Veth, Jacob A.
    Pehlevan, Cengiz
    [J]. SCIPOST PHYSICS CORE, 2023, 6 (02):